CSE 421: Introduction to Algorithms

3

Stable Matching

Shayan Oveis Gharan

Matching Residents to Hospitals

Goal: Given a set of preferences among hospitals and medical school residents (graduating medical students), design a self-reinforcing admissions process.

Unstable pair: applicant A and hospital Y are unstable if: A prefers Y to its assigned hospital. Y prefers A to one of its admitted applicants.

Stable assignment. Assignment with no unstable pairs.

- Natural and desirable condition.
- Individual self-interest will prevent any applicant/hospital side deal from being made.

Simpler: Stable Matching Problem

Given n hetero men $m_1, ..., m_n$, and n hetero women, $w_1, ..., w_n$ find a "stable matching".

- Participants rate members of opposite sex.
- Each man lists women in order of preference.
- Each woman lists men in order of preference.

	favorite	least favorite				favorite	least favorite		
	1 ^{s†}	2 nd	3 rd			1 ^{s†}	2 nd	3 rd	
m_1	<i>w</i> ₁	<i>W</i> ₂	<i>W</i> ₃		<i>w</i> ₁	m_2	m_1	m_3	
m_2	<i>w</i> ₂	<i>w</i> ₁	<i>W</i> ₃		<i>w</i> ₂	m_1	m_2	m_3	
m_3	<i>w</i> ₁	<i>W</i> ₂	<i>w</i> ₃		W ₃	m_1	m_2	m_3	

Stable Matching

Perfect matching:

- Each man gets exactly one woman.
- Each woman gets exactly one man.

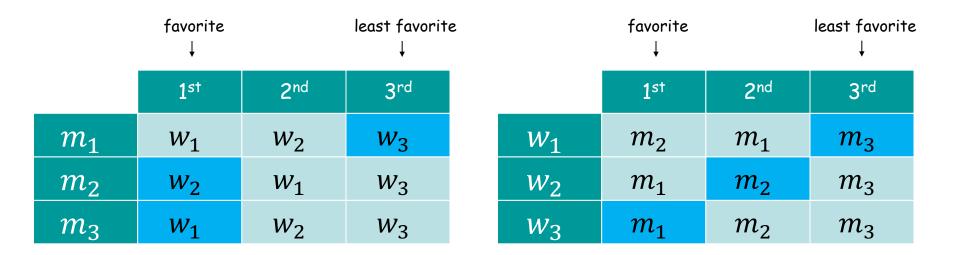
Stability: no incentive for some pair of participants to undermine assignment by joint action. m In a matching M, an unmatched pair m-w is unstable if man m and woman w prefer each other to current partners.

Stable matching: perfect matching with no unstable pairs.

Stable matching problem: Given the preference lists of n men and n women, find a stable matching if one exists.

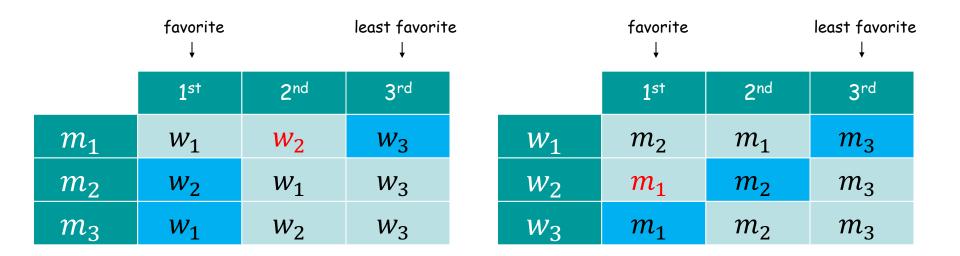
Example

Question. Is assignment (m_1, w_3) , (m_2, w_2) , (m_3, w_1) stable?



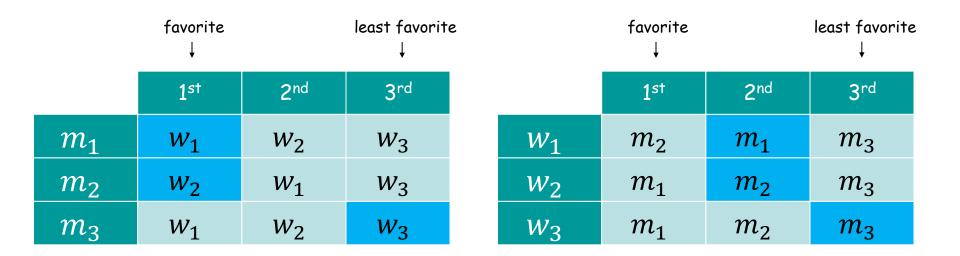
Example

Question. Is assignment (m_1, w_3) , (m_2, w_2) , (m_3, w_1) stable? Answer. No. w_2 , m_1 will hook up.



Example

Question: Is assignment (m_1, w_1) , (m_2, w_2) , (m_3, w_3) stable? Answer: Yes.

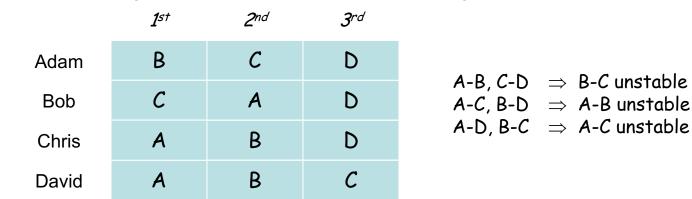


Existence of Stable Matchings

Question. Do stable matchings always exist? Answer. Yes, but not obvious a priori.

Stable roommate problem:

2n people; each person ranks others from **1** to **2n-1**. Assign roommate pairs so that no unstable pairs.



So, Stable matchings do not always exist for stable roommate problem.

Propose-And-Reject Algorithm [Gale-Shapley'62]

```
Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) {
   Choose such a man m
        W = 1<sup>st</sup> woman on m's list to whom m has not yet proposed
        if (w is free)
            assign m and w to be engaged
        else if (w prefers m to her fiancé m')
            assign m and w to be engaged, and m' to be free
        else
            w rejects m
}
```

First step: Properties of Algorithm

Observation 1: Men propose to women in decreasing order of preference.

Observation 2: Each man proposes to each woman at most once

Observation 3: Once a woman is matched, she never becomes unmatched; she only "trades up."

What do we need to prove?

- 1) The algorithm ends
 - How many steps does it take?

- 2) The algorithm is correct [usually the harder part]
 - It outputs a perfect matching
 - The output matching is stable

1) Termination

Claim. Algorithm terminates after $\leq n^2$ iterations of while loop. Proof. Observation 2: Each man proposes to each woman at most once.

Each man makes at most n proposals

So, there are only n^2 possible proposals. •

	1st	2 nd	3 rd	4 th	5 th		1 st	2 nd	3rd	4 th	5 th
Victor	A	В	С	D	E	Amy	W	Х	У	Z	V
Walter	В	С	D	A	E	Brenda	Х	У	Z	V	W
Xavier	С	D	A	В	E	Claire	У	Z	V	W	x
Yuri	D	A	В	С	E	Diane	Z	V	W	х	У
Zoran	A	В	С	D	E	Erika	V	W	х	У	Z

n(n-1) + 1 proposals required

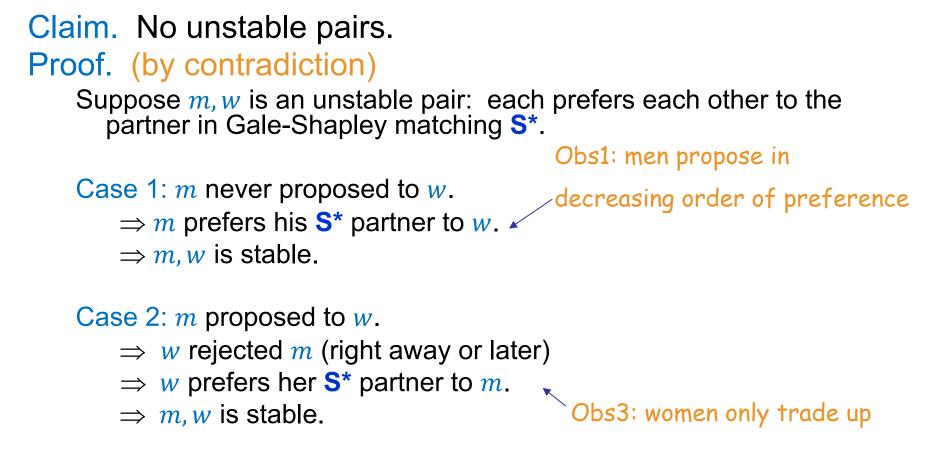
2) Correctness: Output is Perfect matching

Claim. All men and women get matched.

Proof. (by contradiction)

- Suppose, for sake of contradiction, that m_1 is not matched upon termination of algorithm.
- Then some woman, say w_1 , is not matched upon termination.
- By Observation 3 (only trading up, never becoming unmatched), w_1 was never proposed to.
- But, m_1 proposes to everyone, since he ends up unmatched.

2) Correctness: Stability



In either case m, w is stable, a contradiction.

Summary

Stable matching problem: Given n men and n women, and their preferences, find a stable matching if one exists.

- Gale-Shapley algorithm: Guarantees to find a stable matching for any problem instance.
- Q: How to implement GS algorithm efficiently?
- Q: If there are multiple stable matchings, which one does GS find?
- Q: How many stable matchings are there?