Problem: prove that for any \(n \geq 12 \), we can change \(n \) cents of postage using 4/5 cents stamps.

pf.

Base Case: \(n = 12 = 4 + 4 + 4 \), \(13, 14, 15 \checkmark \)

IH: We can change \(n \) cents using 4/5 cent stamps for \(n-1 \geq 15 \), any amount \(12 \leq k \leq n-1 \)

IS: Goal make a change for \(n \).

Start with a 4-cent stamp then use IH to change…

Strong Induction

\[n \]

\[n - 4 \]

\[n - 1 \]

\[n - 4 \leq n - 4 \leq n-1 \]

\[n - 1 \geq 15 \Rightarrow n - 4 \geq 12 \]

Therefore by IH, \(p(n-4) \) holds and \(n \) is done.

G-S Alg example

\[m_1 \]
\[w_1 \]
\[w_2 \]
\[w_3 \]

\[m_2 \]
\[w_1 \]
\[w_3 \]
\[w_2 \]

\[m_3 \]
\[w_3 \]
\[w_1 \]
\[w_2 \]

Claim: All men and women gets matched.

pf. Pf by contradiction
Claim: There is no unstable pair.

Proof: By contradiction!

Suppose m_1, w_1 is unstable.

Case 1: m_1 proposed to w_1.

m_1 not matched \Rightarrow w_1 has rejected m_1.

\Rightarrow By OBS w_1 prefers her match to m_1, contradiction!

Case 2: m_1 never proposed to w_1.

By OBS m_1 goes down his list.

\Rightarrow he is matched to someone he likes more than w_1.

So m_1, w_1 is stable, contradiction!