
CSE 421

Alg Design by Induction,
Dynamic Programming

Shayan Oveis Gharan

1

Interval Scheduling

• Job j starts at 𝑠(𝑗) and finishes at 𝑓 𝑗 and has weight 𝑤!
• Two jobs compatible if they don’t overlap.
• Goal: find maximum weight subset of mutually compatible jobs.

2
Time

0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

Sorting to reduce Subproblems

IS: For jobs 1,…,n we want to compute OPT
Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

Case 1: Suppose OPT has job n.
• So, all jobs i that are not compatible with n are not OPT
• Let p(n) = largest index i < n such that job i is compatible with n.
• Then, we just need to find OPT of 1,… , 𝑝(𝑛)

Case 2: OPT does not select job n.
• Then, OPT is just the optimum 1,… , 𝑛 − 1

Q: Have we made any progress (still reducing to two subproblems)?
A: Yes! This time every subproblem is of the form 1,… , 𝑖 for some 𝑖
So, at most 𝑛 possible subproblems.

3

Take best of the two

Sorting to reduce Subproblems

IS: For jobs 1,…,n we want to compute OPT
Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

Case 1: Suppose OPT has job n.
• So, all jobs i that are not compatible with n are not OPT
• Let p(n) = largest index i < n such that job i is compatible with n.
• Then, we just need to find OPT of 1,… , 𝑝(𝑛)

Case 2: OPT does not select job n.
• Then, OPT is just the optimum 1,… , 𝑛 − 1

Q: Have we made any progress (still reducing to two subproblems)?
A: Yes! This time every subproblem is of the form 1,… , 𝑖 for some 𝑖
So, at most 𝑛 possible subproblems.

4

Take best of the two

This is how we differentiate
from solving Maximum

Independent Set Problem

Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)
Let OPT(j) denote the OPT solution of 1,… , 𝑗

To solve OPT(j):
Case 1: OPT(j) has job j.
• So, all jobs i that are not compatible with j are not OPT(j)
• Let p(j) = largest index i < j such that job i is compatible with j.
• So 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇 𝑝 𝑗 ∪ 𝑗 .

Case 2: OPT(j) does not select job j.
• Then, 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇(𝑗 − 1)

𝑂𝑃𝑇 𝑗 = 6
0 if 𝑗 = 0
max 𝑤! + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o.w.

5

This is the most important
step in design DP algorithms

Algorithm

6

Input: n, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

Compute-Opt(j) {
if (j = 0)

return 0
else

return max(wj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Recursive Algorithm Fails

Even though we have only n subproblems, we do not store the
solution to the subproblems
Ø So, we may re-solve the same problem many many times.

Ex. Number of recursive calls for family of "layered" instances
grows like Fibonacci sequence

7

3
4

5

1
2

𝑝(1) = 0, 𝑝(𝑗) = 𝑗 − 2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

Algorithm with Memoization

8

Input: n, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

for j = 1 to n
M[j] = empty

M[0] = 0

M-Compute-Opt(j) {
if (M[j] is empty)

M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]

}

Memoization. Compute and Store the solution of each sub-problem
in a cache the first time that you face it. lookup as needed.

Bottom up Dynamic Programming

9

Input: n, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

Iterative-Compute-Opt {
M[0] = 0
for j = 1 to n

M[j] = max(wj + M[p(j)], M[j-1])
}

Output M[n]

You can also avoid recursion
• recursion may be easier conceptually when you use induction

Claim: M[j] is value of OPT(j)
Timing: Easy. Main loop is O(n); sorting is O(n log n)

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

3

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

3

4

548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

6

548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

6

6

548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

6

6

7

548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

6

6

77

7

548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

6

6

7

7

10

548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

6

6

7

7

10

Knapsack Problem

Knapsack Problem

Given n objects and a "knapsack.“
Item i weighs wi > 0 kilograms and has value vi > 0.
Knapsack has capacity of W kilograms.
Goal: fill knapsack so as to maximize total value.

Ex: OPT is { 3, 4 } with value 40.

Greedy: repeatedly add item with maximum ratio vi / wi.
Ex: { 5, 2, 1 } achieves only value = 35 Þ greedy not optimal.

21

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2W = 11

Dynamic Programming: First Attempt

Let OPT(i)=Max value of subsets of items 1,… , 𝑖 of weight ≤ 𝑊.

Case 1: 𝑂𝑃𝑇(𝑖) does not select item i
- In this caes 𝑂𝑃𝑇(𝑖) = 𝑂𝑃𝑇(𝑖 − 1)

Case 2: 𝑂𝑃𝑇(𝑖) selects item 𝑖
• In this case, item 𝑖 does not immediately imply we have to

reject other items
• The problem does not reduce to 𝑂𝑃𝑇(𝑖 − 1) because we now

want to pack as much value into box of weight ≤ 𝑊 −𝑤0

Conclusion: We need more subproblems, we need to
strengthen IH.

22

Stronger DP (Strengthenning Hypothesis)

Let 𝑂𝑃𝑇(𝑖, 𝑤) = Max value subset of items 1,… , 𝑖 of weight 0 ≤ 𝑤 ≤ 𝑊

Case 1: 𝑂𝑃𝑇(𝑖, 𝑤) selects item 𝑖
• In this case, 𝑂𝑃𝑇 𝑖, 𝑤 = 𝑣" + 𝑂𝑃𝑇(𝑖 − 1,𝑤 − 𝑤")

Case 2: 𝑂𝑃𝑇 𝑖, 𝑤 does not select item 𝑖
• In this case, 𝑂𝑃𝑇 𝑖, 𝑤 = 𝑂𝑃𝑇(𝑖 − 1,𝑤).

Therefore,

23

𝑂𝑃𝑇 𝑖, 𝑤 = 6
0
𝑂𝑃𝑇 𝑖 − 1,𝑤
max(𝑂𝑃𝑇 𝑖 − 1,𝑤 , 𝑣" + 𝑂𝑃𝑇 𝑖 − 1,𝑤 − 𝑤"

Take best of the two

If 𝑖 = 0
If 𝑤" > 𝑤
o.w.,

DP for Knapsack

24

for w = 0 to W
M[0, w] = 0

for i = 1 to n
for w = 1 to W

if (wi > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

return M[n, W]

Compute-OPT(i,w)
if M[i,w] == empty

if (i==0)
M[i,w]=0

else if (wi > w)
M[i,w]=Comp-OPT(i-1,w)

else
M[i,w]= max {Comp-OPT(i-1,w), vi + Comp-OPT(i-1,w-wi)}

return M[i, w]

recursive

Non-recursive

DP for Knapsack

25

n + 1

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

0

10

0

11

0

W + 1

W = 11

if (wi > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

DP for Knapsack

26

n + 1

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

2

0

1

3

0

1

4

0

1

5

0

1

6

0

1

7

0

1

8

0

1

9

0

1

10

0

1

11

0

1

W + 1

W = 11

if (wi > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

DP for Knapsack

27

n + 1

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

1

3

0

1

4

0

1

5

0

1

6

0

1

7

0

1

8

0

1

9

0

1

10

0

1

11

0

1

W + 1

W = 11
OPT: { 4, 3 }

value = 22 + 18 = 40

if (wi > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

7

DP for Knapsack

28

n + 1

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2

W + 1

W = 11
OPT: { 4, 3 }

value = 22 + 18 = 40

if (wi > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

1

3

0

7

7

1

4

0

7

7

1

5

0

7

18

1

6

0

7

1

7

0

7

1

8

0

7

1

9

0

7

1

10

0

7

1

11

0

7

1

19

DP for Knapsack

29

n + 1

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2

W + 1

W = 11
OPT: { 4, 3 }

value = 22 + 18 = 40

if (wi > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

3

0

7

7

7

1

4

0

7

7

7

1

5

0

7

18

18

1

6

0

7

19

22

1

7

0

7

24

24

1

8

0

7

25

28

1

9

0

7

25

1

10

0

7

25

1

11

0

7

25

1

29

DP for Knapsack

30

n + 1

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2

W + 1

W = 11
OPT: { 4, 3 }

value = 22 + 18 = 40

if (wi > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

Knapsack Problem: Running Time

Running time: Θ(𝑛 ⋅ 𝑊)
• Not polynomial in input size!
• "Pseudo-polynomial.“
• Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm:
There exists a polynomial algorithm that produces a feasible
solution that has value within 0.01% of optimum
in time Poly(n, log W).

31

DP Ideas so far

• You may have to define an ordering to decrease
#subproblems

• You may have to strengthen DP, equivalently the induction,
i.e., you have may have to carry more information to find the
Optimum.

• This means that sometimes we may have to use two
dimensional or three dimensional induction

32

RNA Secondary Structure

RNA Secondary Structure

RNA: A String B = b1b2…bn over alphabet { A, C, G, U }.
Secondary structure. RNA is single-stranded so it tends to loop
back and form base pairs with itself. This structure is essential
for understanding behavior of molecule.

34
G

U

C

A

GA

A

G

CG

A

U
G

A

U

U

A

G

A

C A

A

C

U

G

A

G

U

C

A

U

C

G

G

G

C

C

G

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

complementary base pairs: A-U, C-G

RNA Secondary Structure (Formal)

Secondary structure. A set of pairs S = { (bi, bj) } that satisfy:
[Watson-Crick.]
• S is a matching and
• each pair in S is a Watson-Crick pair: A-U, U-A, C-G, or G-C.
[No sharp turns.]: The ends of each pair are separated by at least 4
intervening bases. If (bi, bj) Î S, then i < j - 4.
[Non-crossing.] If (bi, bj) and (bk, bl) are two pairs in S, then we cannot
have i < k < j < l.

Free energy: Usual hypothesis is that an RNA molecule will maximize
total free energy.

Goal: Given an RNA molecule B = b1b2…bn, find a secondary structure
S that maximizes the number of base pairs.

35

approximate by number of base pairs

Secondary Structure (Examples)

36

C

G G

C

A

G

U

U

U A

A U G U G G C C A U

G G

C

A

G

U

U A

A U G G G C A U

C

G G

C

A

U

G

U

U A

A G U U G G C C A U

sharp turn crossingok

G

G
£4

base pair

DP: First Attempt

First attempt. Let 𝑂𝑃𝑇(𝑛) = maximum number of base pairs in a
secondary structure of the substring b1b2…bn.

Suppose 𝑏# is matched with 𝑏$ in 𝑂𝑃𝑇 𝑛 .
What IH should we use?

Difficulty: This naturally reduces to two subproblems
• Finding secondary structure in 𝑏%, … , 𝑏$&%, i.e., OPT(t-1)
• Finding secondary structure in 𝑏$'%, … , 𝑏#&%, ???

37

1 t n

match bt and bn

DP: Second Attempt

Definition: 𝑂𝑃𝑇(𝑖, 𝑗) = maximum number of base pairs in a secondary
structure of the substring 𝑏", 𝑏"'%, … , 𝑏!

Case 1: If 𝑗 − 𝑖 ≤ 4.
• OPT(i, j) = 0 by no-sharp turns condition.

Case 2: Base 𝑏! is not involved in a pair.
• OPT(i, j) = OPT(i, j-1)

Case 3: Base bj pairs with bt for some i £ t < j – 4
• non-crossing constraint decouples resulting sub-problems
• 𝑂𝑃𝑇 𝑖, 𝑗 = max

$:)$ *+,-. /,01)%
{ 1 + 𝑂𝑃𝑇(𝑖, 𝑡 − 1) + 𝑂𝑃𝑇(𝑡 + 1, 𝑗 − 1) }

38

The most important part of a correct DP; It fixes IH

Recursive Code

39

Let M[i,j]=empty for all i,j.

Compute-OPT(i,j){
if (j-i <= 4)

return 0;
if (M[i,j] is empty)

M[i,j]=Compute-OPT(i,j-1)
for t=i to j-5 do

if (𝒃𝒕, 𝒃𝒋 is in {A-U, U-A, C-G, G-C})
M[i,j]=max(M[i,j], 1+Compute-OPT(i,t-1) +

Compute-OPT(t+1,j-1))
return M[j]

}

Does this code terminate?
What are we inducting on?

Formal Induction

Let 𝑂𝑃𝑇(𝑖, 𝑗) = maximum number of base pairs in a secondary structure
of the substring 𝑏", 𝑏"'%, … , 𝑏!
Base Case: 𝑂𝑃𝑇(𝑖, 𝑗) = 0 for all 𝑖, 𝑗 where 𝑗 − 𝑖 ≤ 4.
IH: For some ℓ ≥ 4, Suppose we have computed 𝑂𝑃𝑇(𝑖, 𝑗) for all 𝑖, 𝑗
where 𝑖 − 𝑗 ≤ ℓ.

IS: Goal: We find 𝑂𝑃𝑇(𝑖, 𝑗) for all 𝑖, 𝑗 where 𝑖 − 𝑗 = ℓ + 1. Fix 𝑖, 𝑗 such
that 𝑖 − 𝑗 = ℓ + 1.
Case 1: Base 𝑏! is not involved in a pair.
• OPT(i, j) = OPT(i, j-1) [this we know by IH since 𝑖 − 𝑗 − 1 = ℓ]

Case 2: Base bj pairs with bt for some i £ t < j – 4
• 𝑂𝑃𝑇 𝑖, 𝑗 = max

$:)$ *+,-. /,01)%
{ 1 + 𝑂𝑃𝑇(𝑖, 𝑡 − 1) + 𝑂𝑃𝑇(𝑡 + 1, 𝑗 − 1) }

40We know by IH since difference ≤ ℓ

Bottom-up DP

41

for k = 1, 2, …, n-1
for i = 1, 2, …, n-1

j = i + k
if (j-i <= 4)

M[i,j]=0;
else

M[i,j]=M[i,j-1]
for t=i to j-5 do

if (𝒃𝒕, 𝒃𝒋 is in {A-U, U-A, C-G, G-C})
M[i,j]=max(M[i,j], 1+ M[i,t-1] + M[t+1,j-1])

return M[1, n]
}

Running Time: 𝑂(𝑛!)

0 0 0

0 0

02

3

4

1

i

6 7 8 9

j

Lesson

We may not always induct on 𝑖 or 𝑤 to get to smaller
subproblems.

We may have to induct on |𝑖 − 𝑗| or 𝑖 + 𝑗 when we are
dealing with more complex problems, e.g., intervals

42

