

Alg Design by Induction, Dynamic Programming

Shayan Oveis Gharan

2

Interval Scheduling

- Job j starts at s(j) and finishes at f(j) and has weight w_j
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Sorting to reduce Subproblems

IS: For jobs 1,...,n we want to compute OPT Sorting Idea: Label jobs by finishing time $f(1) \le \dots \le f(n)$

Case 1: Suppose OPT has job n.

- So, all jobs i that are not compatible with n are not OPT
- Let p(n) = largest index i < n such that job i is compatible with n.
- Then, we just need to find OPT of 1, ..., p(n)

Case 2: OPT does not select job n.

• Then, OPT is just the optimum 1, ..., n-1

Take best of the two

Q: Have we made any progress (still reducing to two subproblems)? A: Yes! This time every subproblem is of the form 1, ..., i for some *i* So, at most *n* possible subproblems.

Sorting to reduce Subproblems

IS: For jobs 1,...,n we want to compute OPT Sorting Idea: Label jobs by finishing time $f(1) \le \dots \le f(n)$

Case 1: Suppose OPT has job n.

So, all jobs i that are not compatible with n are not OPT

Q: Have we made any progress (still reducing to two subproblems)? A: Yes! This time every subproblem is of the form 1, ..., i for some iSo, at most n possible subproblems.

Weighted Job Scheduling by Induction

Case 2: OPT(j) does not select job j.

• Then, OPT(j) = OPT(j-1)

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0 \\ \max\left(w_j + OPT(p(j)), OPT(j-1)\right) & \text{o.w.} \end{cases}$$

Algorithm

```
Input: n, s(1), \ldots, s(n) and f(1), \ldots, f(n) and w_1, \ldots, w_n.
Sort jobs by finish times so that f(1) \leq f(2) \leq \cdots f(n).
Compute p(1), p(2), \ldots, p(n)
Compute-Opt(j) {
    if (j = 0)
        return 0
    else
        return max(w<sub>j</sub> + Compute-Opt(p(j)), Compute-Opt(j-1))
}
```

Recursive Algorithm Fails

Even though we have only n subproblems, we do not store the solution to the subproblems

 \succ So, we may re-solve the same problem many many times.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence

Algorithm with Memoization

Memoization. Compute and Store the solution of each sub-problem in a cache the first time that you face it. lookup as needed.

```
Input: n, s(1), ..., s(n) and f(1), ..., f(n) and w_1, ..., w_n.
Sort jobs by finish times so that f(1) \le f(2) \le \cdots f(n).
Compute p(1), p(2), ..., p(n)
for j = 1 to n
   M[j] = empty
M[0] = 0
M-Compute-Opt(j) {
   if (M[j] is empty)
       M[j] = max(w_j + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
   return M[j]
}
```

Bottom up Dynamic Programming

You can also avoid recursion

recursion may be easier conceptually when you use induction

```
Input: n, s(1), ..., s(n) and f(1), ..., f(n) and w_1, ..., w_n.
Sort jobs by finish times so that f(1) \leq f(2) \leq \cdots f(n).
Compute p(1), p(2), ..., p(n)
Iterative-Compute-Opt {
    M[0] = 0
    for j = 1 to n
        M[j] = max(w<sub>j</sub> + M[p(j)], M[j-1])
}
```

Output M[n]

Claim: M[j] is value of OPT(j) Timing: Easy. Main loop is O(n); sorting is O(n log n)

Knapsack Problem

Knapsack Problem

Given n objects and a "knapsack."

Item i weighs $w_i > 0$ kilograms and has value $v_i > 0$.

Knapsack has capacity of W kilograms.

Goal: fill knapsack so as to maximize total value.

Value Weight Item Ex: OPT is { 3, 4 } with value 40. 1 1 1 W = 112 6 2 3 18 5 4 22 6 5 28 7 Greedy: repeatedly add item with maximum ratio v_i / w_i .

Ex: { 5, 2, 1 } achieves only value = $35 \implies$ greedy not optimal.

Dynamic Programming: First Attempt

Let OPT(i)=Max value of subsets of items 1, ..., i of weight $\leq W$.

Case 1: OPT(i) does not select item i

- In this case OPT(i) = OPT(i-1)

Case 2: OPT(i) selects item i

- In this case, item *i* does not immediately imply we have to reject other items
- The problem does not reduce to OPT(i-1) because we now want to pack as much value into box of weight $\leq W w_i$

Conclusion: We need more subproblems, we need to strengthen IH.

Stronger DP (Strengthenning Hypothesis)

Let OPT(i, w) = Max value subset of items 1, ..., *i* of weight $0 \le w \le W$

Case 1: OPT(i, w) selects item *i* • In this case, $OPT(i, w) = v_i + OPT(i - 1, w - w_i)$ Case 2: OPT(i, w) does not select item *i* • In this case, OPT(i, w) = OPT(i - 1, w). Take best of the two

Therefore,

$$OPT(i,w) = \begin{cases} 0 & \text{If } i = 0 \\ OPT(i-1,w) & \text{If } w_i > w \end{cases}$$

$$(i, w) = \begin{cases} OFT(i-1, w) & \text{if } w_i > w \\ max(OPT(i-1, w), v_i + OPT(i-1, w - w_i) & \text{o.w.}, \end{cases}$$

```
Compute-OPT(i,w)
if M[i,w] == empty
if (i==0)
    M[i,w]=0
    recursive
else if (w<sub>i</sub> > w)
    M[i,w]=Comp-OPT(i-1,w)
else
    M[i,w]= max {Comp-OPT(i-1,w), v<sub>i</sub> + Comp-OPT(i-1,w-w<sub>i</sub>)}
return M[i, w]
```

```
for w = 0 to W
    M[0, w] = 0
for i = 1 to n
    for w = 1 to W
    if (w<sub>i</sub> > w)
        M[i, w] = M[i-1, w]
    else
        M[i, w] = max {M[i-1, w], v<sub>i</sub> + M[i-1, w-w<sub>i</sub>]}
```

```
return M[n, W]
```

		0	1	2	3	4	5	6	7	8	9	10	11
	φ	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0											
 n + 1 	{ 1, 2 }	0											
	{ 1, 2, 3 }	0											
	{ 1, 2, 3, 4 }	0											
↓ ↓	{1,2,3,4,5}	0											

	Ite	m Va	lue	Weight
W = 1	1		L	1
if $(w_i > w)$	2	e	5	2
M[i, w] = M[i-1, w]	3	1	8	5
$M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}$	} 4	2	2	6
	5	2	8	7

		0	1	2	3	4	5	6	7	8	9	10	11
	φ	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
n + 1	{ 1, 2 }	0											
	{ 1, 2, 3 }	0											
	{ 1, 2, 3, 4 }	0											
Ļ	{1,2,3,4,5}	0											

	Item	Value	Weight
W = 11	Item 1 2 3 4	1	1
if $(w_i > w)$	2	6	2
M[i, w] = M[i-1, w]	3	18	5
$M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}$	4	22	6
	5	28	7

OPT: { 4, 3 } value = 22 + 18 = 40	NA/ 44	Item	Value	Weight
	W = 11	1	1	1
if $(w_i > w)$		2	6	2
M[i, w] = M[i-1, w]		3	18	5
$M[i, w] = \max \{M[i-1, w], v_i + M[i-1]\}$., w-w _i]}	4	22	6
		5	28	7

		0	1	2	3	4	5	6	7	8	9	10	11
	φ	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
 n + 1	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{ 1, 2, 3 }	0	1	6	7	7	18	19					
	{ 1, 2, 3, 4 }	0	1										
Ļ	{1,2,3,4,5}	0	1										

OPT: { 4, 3 } value = 22 + 18 = 40	W/ = 11	Item	Value	Weight
	VV - 11	1	1	1
if $(w_i > w)$		2	6	2
M[i, w] = M[i-1, w]		3	18	5
$M[i, w] = \max \{M[i-1, w], v_i + M[i-1]\}$	1, w-w _i]}	4	22	6
		5	28	7

		0	1	2	3	4	5	6	7	8	9	10	11
	φ	0	0	0	0	0	0	0	0	0	0	0	0
n + 1	{1}	0	1	1	1	1	1	1	1	1	1	1	1
	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{ 1, 2, 3 }	0	1	6	7	7	18	19	24	25	25	25	25
	{ 1, 2, 3, 4 }	0	1	6	7	7	18	22	24	28	29		
↓ ↓	{1,2,3,4,5}	0	1										

OPT: { 4, 3 } value = 22 + 18 = 40	14/ 11	Item	Value	Weight
	VV = 11	1	1	1
if $(w_i > w)$		2	6	2
M[i, w] = M[i-1, w]		3	18	5
$M[i, w] = max \{M[i-1, w], v_i + M[i]\}$	-1, w-w _i]}	4	22	6
		5	28	7

		0	1	2	3	4	5	6	7	8	9	10	11
n + 1	φ	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{ 1, 2, 3 }	0	1	6	7	7	18	19	24	25	25	25	25
	{ 1, 2, 3, 4 }	0	1	6	7	7	18	22	24	28	29	29	40
↓ ▼	{1,2,3,4,5}	0	1	6	7	7	18	22	28	29	34	34	40

OPT: { 4, 3 } value = 22 + 18 = 40		Item	Value	Weight
	W = 11	1	1	1
if $(w_i > w)$		2	6	2
M[i, w] = M[i-1, w]		3	18	5
$M[i, w] = \max \{M[i-1, w], v_i + M[i-1]\}$	L, w-w _i]}	4	22	6
		5	28	7

Knapsack Problem: Running Time

Running time: $\Theta(n \cdot W)$

- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm:

There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum in time Poly(n, log W).

DP Ideas so far

- You may have to define an ordering to decrease #subproblems
- You may have to strengthen DP, equivalently the induction, i.e., you have may have to carry more information to find the Optimum.
- This means that sometimes we may have to use two dimensional or three dimensional induction

RNA Secondary Structure

RNA Secondary Structure

RNA: A String $B = b_1 b_2 \dots b_n$ over alphabet { A, C, G, U }. Secondary structure. RNA is single-stranded so it tends to loop back and form base pairs with itself. This structure is essential for understanding behavior of molecule.

RNA Secondary Structure (Formal)

Secondary structure. A set of pairs $S = \{ (b_i, b_j) \}$ that satisfy: [Watson-Crick.]

- S is a *matching* and
- each pair in S is a Watson-Crick pair: A-U, U-A, C-G, or G-C.

[No sharp turns.]: The ends of each pair are separated by at least 4 intervening bases. If $(b_i, b_j) \in S$, then i < j - 4. [Non-crossing.] If (b_i, b_i) and (b_k, b_l) are two pairs in S, then we cannot

have i < k < j < l.

Free energy: Usual hypothesis is that an RNA molecule will maximize total free energy.

Goal: Given an RNA molecule $B = b_1 b_2 \dots b_n$, find a secondary structure S that maximizes the number of base pairs.

Secondary Structure (Examples)

DP: First Attempt

First attempt. Let OPT(n) = maximum number of base pairs in a secondary structure of the substring $b_1b_2...b_n$.

Suppose b_n is matched with b_t in OPT(n). What IH should we use? match b_t and b_n

Difficulty: This naturally reduces to two subproblems

- Finding secondary structure in b_1, \dots, b_{t-1} , i.e., OPT(t-1)
- Finding secondary structure in b_{t+1}, \dots, b_{n-1} , ???

DP: Second Attempt

Definition: OPT(i, j) = maximum number of base pairs in a secondary structure of the substring $b_i, b_{i+1}, ..., b_j$ The most important part of a correct DP; It fixes IH

Case 1: If $j - i \leq 4$.

• OPT(i, j) = 0 by no-sharp turns condition.

Case 2: Base b_j is not involved in a pair.

• OPT(i, j) = OPT(i, j-1)

Case 3: Base b_i pairs with b_t for some $i \le t < j - 4$

- non-crossing constraint decouples resulting sub-problems
- $OPT(i,j) = \max_{t:b_i \text{ pairs with } b_t} \{ 1 + OPT(i,t-1) + OPT(t+1,j-1) \}$

Recursive Code

Does this code terminate? What are we inducting on?

Formal Induction

Let OPT(i, j) = maximum number of base pairs in a secondary structure of the substring b_i, b_{i+1}, \dots, b_j

Base Case: OPT(i,j) = 0 for all i, j where $|j - i| \le 4$.

IH: For some $\ell \ge 4$, Suppose we have computed OPT(i, j) for all i, j where $|i - j| \le \ell$.

IS: Goal: We find OPT(i, j) for all i, j where $|i - j| = \ell + 1$. Fix i, j such that $|i - j| = \ell + 1$.

Case 1: Base b_i is not involved in a pair.

• OPT(i, j) = OPT(i, j-1) [this we know by IH since $|i - (j - 1)| = \ell$]

Case 2: Base b_j pairs with b_t for some $i \le t < j - 4$

• $OPT(i,j) = \max_{t:b_i \text{ pairs with } b_t} \{ 1 + OPT(i,t-1) + OPT(t+1,j-1) \}$

We know by IH since difference $\leq \ell$

Bottom-up DP

```
4
                                                            0
                                                               0
                                                                  0
 for k = 1, 2, ..., n-1
                                                         3
                                                            0
   for i = 1, 2, ..., n-1
                                                               0
                                                       i
     j = i + k
                                                         2
                                                            0
     if (j-i <= 4)
                                                          1
      M[i,j]=0;
                                                               7 8
                                                                     9
                                                            6
       else
         M[i,j]=M[i,j-1]
                                                                 j
         for t=i to j-5 do
            if (b_t, b_j is in {A-U, U-A, C-G, G-C})
              M[i,j] = max(M[i,j], 1 + M[i,t-1] + M[t+1,j-1])
   return M[1, n]
}
```

Running Time: $O(n^3)$

We may not always induct on i or w to get to smaller subproblems.

We may have to induct on |i - j| or i + j when we are dealing with more complex problems, e.g., intervals