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Interval Scheduling

• Job j starts at 𝑠(𝑗) and finishes at 𝑓 𝑗 and has weight 𝑤!
• Two jobs compatible if they don’t overlap.
• Goal: find maximum weight subset of mutually compatible jobs.
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Sorting to reduce Subproblems

IS: For jobs 1,…,n we want to compute OPT
Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

Case 1: Suppose OPT has job n. 
• So, all jobs i that are not compatible with n are not OPT
• Let p(n) = largest index i < n such that job i is compatible with n.
• Then, we just need to find OPT of 1,… , 𝑝(𝑛)

Case 2: OPT does not select job n.
• Then, OPT is just the optimum 1,… , 𝑛 − 1

Q: Have we made any progress (still reducing to two subproblems)?
A: Yes! This time every subproblem is of the form 1,… , 𝑖 for some 𝑖
So, at most 𝑛 possible subproblems.
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Take best of the two
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This is how we differentiate 
from solving Maximum 

Independent Set Problem



Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)
Let OPT(j) denote the OPT solution of 1,… , 𝑗

To solve OPT(j):
Case 1: OPT(j) has job j. 
• So, all jobs i that are not compatible with j are not OPT(j)
• Let p(j) = largest index i < j such that job i is compatible with j.
• So 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇 𝑝 𝑗 ∪ 𝑗 .

Case 2: OPT(j) does not select job j.
• Then, 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇(𝑗 − 1)

𝑂𝑃𝑇 𝑗 = 6
0 if 𝑗 = 0
max 𝑤! + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o.w.
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This is the most important
step in design DP algorithms



Algorithm
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Input: n, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

Compute-Opt(j) {
if (j = 0)

return 0
else

return max(wj + Compute-Opt(p(j)), Compute-Opt(j-1))
}



Recursive Algorithm Fails

Even though we have only n subproblems, we do not store the 
solution to the subproblems
Ø So, we may re-solve the same problem many many times.

Ex.  Number of recursive calls for family of "layered" instances 
grows like Fibonacci sequence
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Algorithm with Memoization
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Input: n, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

for j = 1 to n
M[j] = empty

M[0] = 0

M-Compute-Opt(j) {
if (M[j] is empty)

M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]

}

Memoization.  Compute and Store the solution of each sub-problem  
in a cache the first time that you face it. lookup as needed.



Bottom up Dynamic Programming
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Input: n, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

Iterative-Compute-Opt {
M[0] = 0
for j = 1 to n

M[j] = max(wj + M[p(j)], M[j-1])
}

Output M[n]

You can also avoid recursion
• recursion may be easier conceptually when you use induction

Claim: M[j] is value of OPT(j)
Timing: Easy.  Main loop is O(n); sorting is O(n log n)



Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.
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Knapsack Problem



Knapsack Problem

Given n objects and a "knapsack.“
Item i weighs wi > 0 kilograms and has value vi > 0.
Knapsack has capacity of W kilograms.
Goal: fill knapsack so as to maximize total value.

Ex: OPT is { 3, 4 } with value 40.

Greedy:  repeatedly add item with maximum ratio vi / wi.
Ex:  { 5, 2, 1 } achieves only value = 35  Þ greedy not optimal.
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Dynamic Programming: First Attempt

Let OPT(i)=Max value of subsets of items 1,… , 𝑖 of weight ≤ 𝑊.

Case 1: 𝑂𝑃𝑇(𝑖) does not select item i
- In this caes 𝑂𝑃𝑇(𝑖) = 𝑂𝑃𝑇(𝑖 − 1)

Case 2: 𝑂𝑃𝑇(𝑖) selects item 𝑖
• In this case, item 𝑖 does not immediately imply we have to 

reject other items
• The problem does not reduce to 𝑂𝑃𝑇(𝑖 − 1) because we now 

want to pack as much value into box of weight ≤ 𝑊 −𝑤0

Conclusion: We need more subproblems, we need to 
strengthen IH.
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Stronger DP (Strengthenning Hypothesis)

Let 𝑂𝑃𝑇(𝑖, 𝑤) = Max value subset of items 1,… , 𝑖 of weight 0 ≤ 𝑤 ≤ 𝑊

Case 1: 𝑂𝑃𝑇(𝑖, 𝑤) selects item 𝑖
• In this case, 𝑂𝑃𝑇 𝑖, 𝑤 = 𝑣" + 𝑂𝑃𝑇(𝑖 − 1,𝑤 − 𝑤")

Case 2: 𝑂𝑃𝑇 𝑖, 𝑤 does not select item 𝑖
• In this case, 𝑂𝑃𝑇 𝑖, 𝑤 = 𝑂𝑃𝑇(𝑖 − 1,𝑤).

Therefore,
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𝑂𝑃𝑇 𝑖, 𝑤 = 6
0
𝑂𝑃𝑇 𝑖 − 1,𝑤
max(𝑂𝑃𝑇 𝑖 − 1,𝑤 , 𝑣" + 𝑂𝑃𝑇 𝑖 − 1,𝑤 − 𝑤"

Take best of the two

If 𝑖 = 0
If 𝑤" > 𝑤
o.w.,



DP for Knapsack
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for w = 0 to W
M[0, w] = 0

for i = 1 to n
for w = 1 to W

if (wi > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}

return M[n, W]

Compute-OPT(i,w)
if M[i,w] == empty 

if (i==0)
M[i,w]=0

else if (wi > w)
M[i,w]=Comp-OPT(i-1,w)

else
M[i,w]= max {Comp-OPT(i-1,w), vi + Comp-OPT(i-1,w-wi)}        

return M[i, w]

recursive

Non-recursive



DP for Knapsack
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DP for Knapsack
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DP for Knapsack
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DP for Knapsack
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DP for Knapsack
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DP for Knapsack
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Knapsack Problem: Running Time

Running time: Θ(𝑛 ⋅ 𝑊)
• Not polynomial in input size!
• "Pseudo-polynomial.“
• Decision version of Knapsack is NP-complete. 

Knapsack approximation algorithm:  
There exists a polynomial algorithm that produces a feasible 
solution that has value within 0.01% of optimum 
in time Poly(n, log W).
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DP Ideas so far

• You may have to define an ordering to decrease 
#subproblems

• You may have to strengthen DP, equivalently the induction, 
i.e., you have may have to carry more information to find the 
Optimum. 

• This means that sometimes we may have to use two 
dimensional or three dimensional induction

32



RNA Secondary Structure



RNA Secondary Structure

RNA: A String B = b1b2…bn over alphabet { A, C, G, U }.
Secondary structure.  RNA is single-stranded so it tends to loop 
back and form base pairs with itself. This structure is essential 
for understanding behavior of molecule.
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complementary base pairs:  A-U, C-G



RNA Secondary Structure (Formal)

Secondary structure.  A set of pairs S = { (bi, bj) } that satisfy:
[Watson-Crick.]
• S is a matching and 
• each pair in S is a Watson-Crick pair: A-U, U-A, C-G, or G-C.
[No sharp turns.]: The ends of each pair are separated by at least 4 
intervening bases.  If (bi, bj) Î S, then i < j - 4.
[Non-crossing.] If (bi, bj)  and (bk, bl) are two pairs in S, then we cannot 
have i < k < j < l.

Free energy:  Usual hypothesis is that an RNA molecule will maximize 
total free energy.

Goal: Given an RNA molecule B = b1b2…bn, find a secondary structure 
S that maximizes the number of base pairs.
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approximate by number of base pairs



Secondary Structure (Examples)
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DP: First Attempt

First attempt. Let 𝑂𝑃𝑇(𝑛) = maximum number of base pairs in a 
secondary structure of the substring  b1b2…bn.

Suppose 𝑏# is matched with 𝑏$ in 𝑂𝑃𝑇 𝑛 .
What IH should we use?

Difficulty: This naturally reduces to two subproblems
• Finding secondary structure in 𝑏%, … , 𝑏$&%, i.e., OPT(t-1)
• Finding secondary structure in 𝑏$'%, … , 𝑏#&%,   ???

37

1 t n

match bt and bn



DP: Second Attempt

Definition: 𝑂𝑃𝑇(𝑖, 𝑗) = maximum number of base pairs in a secondary 
structure of the substring 𝑏", 𝑏"'%, … , 𝑏!

Case 1: If  𝑗 − 𝑖 ≤ 4.
• OPT(i, j) = 0 by no-sharp turns condition.

Case 2: Base 𝑏! is not involved in a pair.
• OPT(i, j) = OPT(i, j-1)

Case 3: Base bj pairs with bt for some i £ t < j – 4
• non-crossing constraint decouples resulting sub-problems
• 𝑂𝑃𝑇 𝑖, 𝑗 = max

$:)$ *+,-. /,01 )%
{ 1 + 𝑂𝑃𝑇(𝑖, 𝑡 − 1) + 𝑂𝑃𝑇(𝑡 + 1, 𝑗 − 1) }
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The most important part of a correct DP; It fixes IH 



Recursive Code
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Let M[i,j]=empty for all i,j.

Compute-OPT(i,j){
if (j-i <= 4)

return 0;
if (M[i,j] is empty)

M[i,j]=Compute-OPT(i,j-1)
for t=i to j-5 do

if (𝒃𝒕, 𝒃𝒋 is in {A-U, U-A, C-G, G-C})
M[i,j]=max(M[i,j], 1+Compute-OPT(i,t-1) +          

Compute-OPT(t+1,j-1))
return M[j]

}

Does this code terminate?
What are we inducting on? 



Formal Induction

Let 𝑂𝑃𝑇(𝑖, 𝑗) = maximum number of base pairs in a secondary structure 
of the substring 𝑏", 𝑏"'%, … , 𝑏!
Base Case: 𝑂𝑃𝑇(𝑖, 𝑗) = 0 for all 𝑖, 𝑗 where 𝑗 − 𝑖 ≤ 4.
IH: For some ℓ ≥ 4, Suppose we have computed 𝑂𝑃𝑇(𝑖, 𝑗) for all 𝑖, 𝑗
where 𝑖 − 𝑗 ≤ ℓ.

IS: Goal: We find 𝑂𝑃𝑇(𝑖, 𝑗) for all 𝑖, 𝑗 where 𝑖 − 𝑗 = ℓ + 1. Fix 𝑖, 𝑗 such 
that 𝑖 − 𝑗 = ℓ + 1.
Case 1: Base 𝑏! is not involved in a pair.
• OPT(i, j) = OPT(i, j-1) [this we know by IH since 𝑖 − 𝑗 − 1 = ℓ]

Case 2: Base bj pairs with bt for some i £ t < j – 4
• 𝑂𝑃𝑇 𝑖, 𝑗 = max

$:)$ *+,-. /,01 )%
{ 1 + 𝑂𝑃𝑇(𝑖, 𝑡 − 1) + 𝑂𝑃𝑇(𝑡 + 1, 𝑗 − 1) }

40We know by IH since difference ≤ ℓ



Bottom-up DP
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for k = 1, 2, …, n-1
for i = 1, 2, …, n-1

j = i + k
if (j-i <= 4)

M[i,j]=0;
else

M[i,j]=M[i,j-1]
for t=i to j-5 do

if (𝒃𝒕, 𝒃𝒋 is in {A-U, U-A, C-G, G-C})
M[i,j]=max(M[i,j], 1+ M[i,t-1] + M[t+1,j-1])

return M[1, n]
}

Running Time: 𝑂(𝑛!)

0 0 0
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Lesson

We may not always induct on 𝑖 or 𝑤 to get to smaller 
subproblems. 

We may have to induct on |𝑖 − 𝑗| or 𝑖 + 𝑗 when we are 
dealing with more complex problems, e.g., intervals
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