
CSE 421

Alg Design by Induction, 
Dynamic Programming

Shayan Oveis Gharan

1



Maximum Consecutive Subsequence

Problem: Given a sequence 𝑥!, … , 𝑥" of integers (not 
necessarily positive), 
Goal: Find a subsequence of consecutive elements s.t., the 
sum of its numbers is maximum.

1   -3    7   -2   -3    8   -10   1    -7

Applications: Figuring out the highest interest rate period in 
stock market

2



First Attempt (Induction)
Suppose we can find the maximum-sum subsequence of 
𝑥!, … , 𝑥"#!. Say it is 𝑥$, … , 𝑥%

• If 𝑥" < 0 then it does not belong to the largest 
subsequence. So, we can output 𝑥$, … , 𝑥%

• Suppose 𝑥" > 0.
• If 𝑗 = 𝑛 − 1 then 𝑥! , … , 𝑥" is the maximum-sum 

subsequence.

• If 𝑗 < 𝑛 − 1 there are two possibilities
1) 𝑥!, … , 𝑥" is still the maximum-sum subsequence
2) A sequence 𝑥#, … , 𝑥$ is the maximum-sum subseqence

-3,   7,   -2,  1,   -8,   6,   -2,        

3

4

𝑥$𝑥$%&



Second Attempt (Strengthing Ind Hyp)

Stronger Ind Hypothesis: Given 𝑥!, … , 𝑥"#! we can compute 
the maximum-sum subsequence, and the maximum-sum 
suffix subsequence.

-3,   7,  -2,  1,  -8,  6,  -2

Say 𝒙𝒊, … , 𝒙𝒋 is the maximum-sum and 𝑥(, … , 𝑥"#! is the 
maximum-sum suffix subsequences.

• If 𝑥( +⋯+ 𝑥"#! + 𝑥" > 𝑥$ +⋯+ 𝑥% then 𝑥(, … , 𝑥" will be 
the new maximum-sum subsequence

4

𝑥! 𝑥" 𝑥# 𝑥$%&Can be empty



Are we done?

5



Updating Max Suffix Subsequence

Say 𝑥(, … , 𝑥"#! is the maximum-sum suffix subsequences 
of 𝑥!, … , 𝑥"#!.

• If 𝑥( +⋯+ 𝑥" ≥ 0 then, 
𝑥(, … , 𝑥" is the new maximum-sum suffix subsequence

• Otherwise,
The new maximum-sum suffix is the empty string.

6

-3,   7,  -2,  1,  -8,  6,  -2,       4
𝑥$



Maximum Sum Subsequence ALG

7

Initialize S=0 (Sum of numbers in Maximum Subseq)
Initialize U=0 (Sum of numbers in Maximum Suffix)
for (i=1 to n) {

if (x[i] + U > S)
S = x[i] + U

if (x[i] + U > 0)
U = x[i] + U

else
U = 0

}
Output S.

-3       7       -2       1        -8        6       -2       4



Pf of Correct: Maximum Sum Subseq
Ind Hypo: Suppose 
• 𝑥!, … , 𝑥" is the max-sum-subseq of 𝑥&, … , 𝑥$%&
• 𝑥#, … , 𝑥$%& is the max-suffix-sum-sub of 𝑥&, … , 𝑥$%&

Ind Step: Suppose 𝑥', … , 𝑥( is the max-sum-subseq of 𝑥&, … , 𝑥$

Case 1 (𝑏 < 𝑛): 𝑥', … , 𝑥( is also the max-sum-subseq of 𝑥&, … , 𝑥$%&
So, 𝑎 = 𝑖, 𝑏 = 𝑗 and the algorithm correctly outputs OPT

Case 2 (𝑏 = 𝑛): We must have 𝑥', … , 𝑥(%& is the max-suff-sum of 
𝑥&, … , 𝑥$%&.
If not, then

𝑥# +⋯𝑥$%& > 𝑥' +⋯+ 𝑥$%&
So, 𝑥# +⋯+ 𝑥$ > 𝑥' +⋯+ 𝑥( which is a contradiction.
Therefore, 𝑎 = 𝑘 and the algorithm correctly outputs OPT

8

Special Cases (You don’t need to mention if follows from above): 
• The max-suffix-sum is empty string
• There are multiple maximum sum subsequences.



Pf of Correct: Max-Sum Suff Subseq
Ind Hypo: Suppose 
• 𝑥!, … , 𝑥" is the max-sum-subseq of 𝑥&, … , 𝑥$%&
• 𝑥#, … , 𝑥$%& is the max-suffix-sum-sub of 𝑥&, … , 𝑥$%&

Ind Step: Suppose 𝑥', … , 𝑥$ is the max-suffix-sum-subseq of 𝑥&, … , 𝑥$
Note that we may also have an empty sequence

Case 1 (OPT is empty): Then,  we must have 𝑥# +⋯+ 𝑥$ < 0. So the 
algorithm correctly finds max-suffix-sum subsequence.

Case 2 (𝑥', … , 𝑥$ is nonempty): We must have 𝑥' +⋯+ 𝑥$ ≥ 0. 
Also, 𝑥', … , 𝑥$%& must be the max-suffix-sum of 𝑥&, … , 𝑥$%&. If not, 

𝑥' +⋯+ 𝑥$%& < 𝑥# +⋯+ 𝑥$%&
which implies 𝑥' +⋯+ 𝑥$ < 𝑥# +⋯+ 𝑥$ which is a contradiction.

Therefore, 𝑎 = 𝑘. So, the algorithm correctly finds max-suffix-sum 
subseqence.

9



Summary

• Try to reduce an instance of size n to smaller instances
• Never solve a problem twice

• Before designing an algorithm study properties of 
optimum solution

• If ordinary induction fails, you may need to strengthen 
the induction hypothesis

10



Dynamic Programming



Algorithmic Paradigm
Greedy: Build up a solution incrementally, myopically optimizing 
some local criterion.

Divide-and-conquer: Break up a problem into two sub-problems, 
solve each sub-problem independently, and combine solution to 
sub-problems to form solution to original problem. 

Dynamic programming. Break up a problem into a series of 
overlapping sub-problems, and build up solutions to larger and 
larger sub-problems. Memorize the answers to obtain polynomial 
time ALG.



Dynamic Programming History
Bellman.  Pioneered the systematic study of dynamic 
programming in the 1950s.

Etymology.
Dynamic programming = planning over time.

Secretary of Defense was hostile to mathematical research.

Bellman sought an impressive name to avoid confrontation.

• "it's impossible to use dynamic in a pejorative sense"

• "something not even a Congressman could object to"



Areas:
• Bioinformatics
• Control Theory
• Information Theory
• Operations Research
• Computer Science: Theory, Graphics, AI, …

Some famous DP algorithms
• Viterbi for hidden Markov Model
• Unix diff for comparing two files.
• Smith-Waterman for sequence alignment.
• Bellman-Ford for shortest path routing in networks.
• Cocke-Kasami-Younger for parsing context free grammars.

Dynamic Programming Applications



Dynamic programming is nothing but algorithm design by 
induction!

We just ”remember” the subproblems that we have solved 
so far to avoid re-solving the same sub-problem many 
times. 

Dynamic Programming



Weighted Interval Scheduling



Interval Scheduling

• Job j starts at 𝑠(𝑗) and finishes at 𝑓 𝑗 and has weight 𝑤"
• Two jobs compatible if they don’t overlap.
• Goal: find maximum weight subset of mutually compatible jobs.

17
Time

0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b



Unweighted Interval Scheduling: Review

Recall: Greedy algorithm works if all weights are 1:
• Consider jobs in ascending order of finishing time
• Add job to a subset if it is compatible with prev added jobs.
OBS: Greedy ALG fails spectacularly (no approximation ratio) if 
arbitrary weights are allowed:

18

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 1000

weight = 1

by finish

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a1

weight = 1000

weight = 999 a1 a1 a1 a1 a1 a1 a1 a1 a1

by weight



Weighted Job Scheduling by Induction

Suppose 1,… , 𝑛 are all jobs. Let us use induction:

IH (strong ind): Suppose we can compute the optimum job scheduling 
for < 𝑛 jobs.

IS: Goal: For any n jobs we can compute OPT.
Case 1: Job n is not in OPT.
-- Then, just return OPT of 1,… , 𝑛 − 1.

Case 2: Job n is in OPT.
-- Then, delete all jobs not compatible with n and recurse. 

Q: Are we done?
A: No, How many subproblems are there?
Potentially 2$ all possible subsets of jobs. 

19

Take best of the two

n
n-1 n-2

n-2 n-3 n-3 n-4



A Bad Example

Consider jobs n/2+1,…,n. These decisions have no impact on one 
another.
How many subproblems do we get?

20
Time

1

n/2+1
2

n/2+2
3

n/2+3

n/2

n



Sorting to Reduce Subproblems

IS: For jobs 1,…,n we want to compute OPT
Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

Case 1: Suppose OPT has job n. 
• So, all jobs i that are not compatible with n are not OPT
• Let p(n) = largest index i < n such that job i is compatible with n.
• Then, we just need to find OPT of 1,… , 𝑝(𝑛)

21
n

n-1

n-2

P(n)+1
P(n)

1



Sorting to reduce Subproblems

IS: For jobs 1,…,n we want to compute OPT
Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

Case 1: Suppose OPT has job n. 
• So, all jobs i that are not compatible with n are not OPT
• Let p(n) = largest index i < n such that job i is compatible with n.
• Then, we just need to find OPT of 1,… , 𝑝(𝑛)

Case 2: OPT does not select job n.
• Then, OPT is just the optimum 1,… , 𝑛 − 1

Q: Have we made any progress (still reducing to two subproblems)?
A: Yes! This time every subproblem is of the form 1,… , 𝑖 for some 𝑖
So, at most 𝑛 possible subproblems.

22

Take best of the two



Sorting to reduce Subproblems

IS: For jobs 1,…,n we want to compute OPT
Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

Case 1: Suppose OPT has job n. 
• So, all jobs i that are not compatible with n are not OPT
• Let p(n) = largest index i < n such that job i is compatible with n.
• Then, we just need to find OPT of 1,… , 𝑝(𝑛)

Case 2: OPT does not select job n.
• Then, OPT is just the optimum 1,… , 𝑛 − 1

Q: Have we made any progress (still reducing to two subproblems)?
A: Yes! This time every subproblem is of the form 1,… , 𝑖 for some 𝑖
So, at most 𝑛 possible subproblems.

23

Take best of the two

This is how we differentiate 
from solving Maximum 

Independent Set Problem



Bad Example Review

How many subproblems do we get in this sorted order?

24
Time

1

2
3

4
5

6

n-1

n



Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)
Let OPT(j) denote the OPT solution of 1,… , 𝑗

To solve OPT(j):
Case 1: OPT(j) has job j. 
• So, all jobs i that are not compatible with j are not OPT(j)
• Let p(j) = largest index i < j such that job i is compatible with j.
• So 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇 𝑝 𝑗 ∪ 𝑗 .

Case 2: OPT(j) does not select job j.
• Then, 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇(𝑗 − 1)

𝑂𝑃𝑇 𝑗 = A
0 if 𝑗 = 0
max 𝑤" + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o.w.

25

This is the most important
step in design DP algorithms



Algorithm

26

Input: n, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

Compute-Opt(j) {
if (j = 0)

return 0
else

return max(wj + Compute-Opt(p(j)), Compute-Opt(j-1))
}



Recursive Algorithm Fails

Even though we have only n subproblems, we do not store the 
solution to the subproblems
Ø So, we may re-solve the same problem many many times.

Ex.  Number of recursive calls for family of "layered" instances 
grows like Fibonacci sequence

27

3
4

5

1
2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0



Algorithm with Memoization

28

Input: n, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

for j = 1 to n
M[j] = empty

M[0] = 0

M-Compute-Opt(j) {
if (M[j] is empty)

M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]

}

Memoization.  Compute and Store the solution of each sub-problem  
in a cache the first time that you face it. lookup as needed.



Bottom up Dynamic Programming

29

Input: n, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

Iterative-Compute-Opt {
M[0] = 0
for j = 1 to n

M[j] = max(wj + M[p(j)], M[j-1])
}

Output M[n]

You can also avoid recusion
• recursion may be easier conceptually when you use induction

Claim: M[j] is value of OPT(j)
Timing: Easy.  Main loop is O(n); sorting is O(n log n)



Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j



Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

3



Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

3

4



548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4



548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

6



548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

6

6



548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

6

6

7



548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

6

6

77

7



548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

6

6

7

7

10



548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

6

6

7

7

10



Knapsack Problem



Knapsack Problem

Given n objects and a "knapsack.“
Item i weighs wi > 0 kilograms and has value vi > 0.
Knapsack has capacity of W kilograms.
Goal: fill knapsack so as to maximize total value.

Ex: OPT is { 3, 4 } with value 40.

Greedy:  repeatedly add item with maximum ratio vi / wi.
Ex:  { 5, 2, 1 } achieves only value = 35  Þ greedy not optimal.

41

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2W = 11



Dynamic Programming: First Attempt

Let OPT(i)=Max value of subsets of items 1,… , 𝑖 of weight ≤ 𝑊.

Case 1: 𝑂𝑃𝑇(𝑖) does not select item i
- In this caes 𝑂𝑃𝑇(𝑖) = 𝑂𝑃𝑇(𝑖 − 1)

Case 2: 𝑂𝑃𝑇(𝑖) selects item 𝑖
• In this case, item 𝑖 does not immediately imply we have to 

reject other items
• The problem does not reduce to 𝑂𝑃𝑇(𝑖 − 1) because we now 

want to pack as much value into box of weight ≤ 𝑊 −𝑤!

Conclusion: We need more subproblems, we need to 
strengthen IH.

42



Stronger DP (Strengthenning Hypothesis)

Let 𝑂𝑃𝑇(𝑖, 𝑤) = Max value subset of items 1,… , 𝑖 of weight 0 ≤ 𝑤 ≤ 𝑊

Case 1: 𝑂𝑃𝑇(𝑖, 𝑤) selects item 𝑖
• In this case, 𝑂𝑃𝑇 𝑖, 𝑤 = 𝑣! + 𝑂𝑃𝑇(𝑖 − 1,𝑤 − 𝑤!)

Case 2: 𝑂𝑃𝑇 𝑖, 𝑤 does not select item 𝑖
• In this case, 𝑂𝑃𝑇 𝑖, 𝑤 = 𝑂𝑃𝑇(𝑖 − 1,𝑤).

Therefore,

43

𝑂𝑃𝑇 𝑖, 𝑤 = A
0
𝑂𝑃𝑇 𝑖 − 1,𝑤
max(𝑂𝑃𝑇 𝑖 − 1,𝑤 , 𝑣! + 𝑂𝑃𝑇 𝑖 − 1,𝑤 − 𝑤!

Take best of the two

If 𝑖 = 0
If 𝑤! > 𝑤
o.w.,



DP for Knapsack

44

for w = 0 to W
M[0, w] = 0

for i = 1 to n
for w = 1 to W

if (wi > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}

return M[n, W]

Compute-OPT(i,w)
if M[i,w] == empty 

if (i==0)
M[i,w]=0

else if (wi > w)
M[i,w]=Comp-OPT(i-1,w)

else
M[i,w]= max {Comp-OPT(i-1,w), vi + Comp-OPT(i-1,w-wi)}        

return M[i, w]

recursive

Non-recursive



DP for Knapsack

45

n + 1

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

0

10

0

11

0

W + 1

W = 11

if (wi > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}



DP for Knapsack

46

n + 1

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

2

0

1

3

0

1

4

0

1

5

0

1

6

0

1

7

0

1

8

0

1

9

0

1

10

0

1

11

0

1

W + 1

W = 11

if (wi > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}



DP for Knapsack

47

n + 1

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

1

3

0

1

4

0

1

5

0

1

6

0

1

7

0

1

8

0

1

9

0

1

10

0

1

11

0

1

W + 1

W = 11
OPT:  { 4, 3 }

value = 22 + 18 = 40

if (wi > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}

7



DP for Knapsack

48

n + 1

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2

W + 1

W = 11
OPT:  { 4, 3 }

value = 22 + 18 = 40

if (wi > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

1

3

0

7

7

1

4

0

7

7

1

5

0

7

18

1

6

0

7

1

7

0

7

1

8

0

7

1

9

0

7

1

10

0

7

1

11

0

7

1

19



DP for Knapsack

49

n + 1

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2

W + 1

W = 11
OPT:  { 4, 3 }

value = 22 + 18 = 40

if (wi > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

3

0

7

7

7

1

4

0

7

7

7

1

5

0

7

18

18

1

6

0

7

19

22

1

7

0

7

24

24

1

8

0

7

25

28

1

9

0

7

25

1

10

0

7

25

1

11

0

7

25

1

29



DP for Knapsack

50

n + 1

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2

W + 1

W = 11
OPT:  { 4, 3 }

value = 22 + 18 = 40

if (wi > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40



Knapsack Problem: Running Time

Running time: Θ(𝑛 ⋅ 𝑊)
• Not polynomial in input size!
• "Pseudo-polynomial.“
• Decision version of Knapsack is NP-complete. 

Knapsack approximation algorithm:  
There exists a polynomial algorithm that produces a feasible 
solution that has value within 0.01% of optimum 
in time Poly(n, log W).

51



DP Ideas so far

• You may have to define an ordering to decrease 
#subproblems

• You may have to strengthen DP, equivalently the induction, 
i.e., you have may have to carry more information to find the 
Optimum. 

• This means that sometimes we may have to use two 
dimensional or three dimensional induction

52


