CSE 421

Median, Approximation Alg

Shayan Oveis Gharan
Integer Multiplication (Summary)

- Naïve: $\Theta(n^2)$
- Karatsuba: $\Theta(n^{1.585 \ldots})$

- **Amusing exercise**: generalize Karatsuba to do 5 size n/3 subproblems
 This gives $\Theta(n^{1.46 \ldots})$ time algorithm

- Best known algorithm runs in $\Theta(n \log n)$ using fast Fourier transform
 but mostly unused in practice (unless you need really big numbers - a billion digits of π, say)

- Best lower bound $O(n)$: A fundamental open problem
Median
Selecting k-th smallest

Problem: Given numbers $x_1, ..., x_n$ and an integer $1 \leq k \leq n$ output the k-th smallest number

Sel($\{x_1, ..., x_n\}, k$)

A simple algorithm: Sort the numbers in time $O(n \log n)$ then return the k-th smallest in the array.

Can we do better?

Yes, in time $O(n)$ if $k = 1$ or $k = 2$.

Can we do $O(n)$ for all possible values of k?

Assume all numbers are distinct for simplicity.
An Idea

Choose a number w from x_1, \ldots, x_n

Define

- $S_<(w) = \{x_i: x_i < w\}$
- $S_=(w) = \{x_i: x_i = w\}$
- $S_>(w) = \{x_i: x_i > w\}$

Solve the problem recursively as follows:

- If $k \leq |S_<(w)|$, output $Sel(S_<(w), k)$
- Else if $k \leq |S_<(w)| + |S_=(w)|$, output w
- Else output $Sel(S_>(w), k - |S_<(w)| - |S_=(w)|)$

Ideally want $|S_<(w)|, |S_>(w)| \leq n/2$. In this case ALG runs in $O(n) + O\left(\frac{n}{2}\right) + O\left(\frac{n}{4}\right) + \cdots + O(1) = O(n)$. Can be computed in linear time.
How to choose w?

Suppose we choose w uniformly at random similar to the pivot in quicksort.
Then, \(\mathbb{E}[|S_<(w)|] = \mathbb{E}[|S_>(w)|] = n/2 \). Algorithm runs in \(O(n) \) in expectation.

Can we get \(O(n) \) running time deterministically?
- Partition numbers into sets of size 3.
- Sort each set (takes \(O(n) \))
- \(w = \text{Sel(midpoints, n/6)} \)
How to lower bound $|S_{<}(w)|, |S_{>}(w)|$?

- $|S_{<}(w)| \geq 2 \left(\frac{n}{6} \right) = \frac{n}{3}$
- $|S_{>}(w)| \geq 2 \left(\frac{n}{6} \right) = \frac{n}{3}$.

\[\frac{n}{3} \leq |S_{<}(w)|, |S_{>}(w)| \leq \frac{2n}{3} \]

So, what is the running time?
Asymptotic Running Time?

- If \(k \leq |S_<(w)| \), output \(Sel(S_<(w), k) \)
- Else if \(k \leq |S_<(w)| + |S_= (w)| \), output \(w \)
- Else output \(Sel(S_>(w), k - S_<(w) - S_= (w)) \)

Where \(\frac{n}{3} \leq |S_<(w)|, |S_>(w)| \leq \frac{2n}{3} \)

\[
T(n) = T \left(\frac{n}{3} \right) + T \left(\frac{2n}{3} \right) + O(n) \Rightarrow T(n) = O(n \log n)
\]
An Improved Idea

Partition into $n/5$ sets. Sort each set and set $w = \text{Sel}(\text{midpoints}, n/10)$

- $|S_<(w)| \geq 3 \left(\frac{n}{10} \right) = \frac{3n}{10}
- |S_>(w)| \geq 3 \left(\frac{n}{10} \right) = \frac{3n}{10}

\[\frac{3n}{10} \leq |S_<(w)|, |S_>(w)| \leq \frac{7n}{10} \]

\[T(n) = T\left(\frac{n}{5} \right) + T\left(\frac{7n}{10} \right) + O(n) \Rightarrow T(n) = O(n) \]
Median Algorithm

\[
\text{Sel}(S, k) \begin{cases}
n \leftarrow |S| \\
\text{If } (n < ??) \text{ return } ?? \\
\text{Partition } S \text{ into } n/5 \text{ sets of size 5} \\
\text{Sort each set of size 5 and let } M \text{ be the set of medians, so } |M| = n/5 \\
\text{Let } w = \text{Sel}(M, n/10) \\
\text{For } i = 1 \text{ to } n \{ \\
\text{If } x_i < w \text{ add } x \text{ to } S_<(w) \\
\text{If } x_i > w \text{ add } x \text{ to } S_>(w) \\
\text{If } x_i = w \text{ add } x \text{ to } S_= (w) \\
\} \\
\text{If } (k \leq |S_<(w)|) \\
\text{return } \text{Sel}(S_<(w), k) \\
\text{else if } (k \leq |S_<(w)| + |S_=(w)|) \\
\text{return } w; \\
\text{else} \\
\text{return } \text{Sel}(S_>(w), k - |S_<(w)| - |S_=(w)|) \\
\end{cases}
\]

We can maintain each set in an array
D&C Summary

Idea:

“Two halves are better than a whole”
 • if the base algorithm has super-linear complexity.
“If a little's good, then more's better”
 • repeat above, recursively

• Applications: Many.
 • Binary Search, Merge Sort, (Quicksort),
 • Root of a Function
 • Closest points,
 • Integer multiplication
 • Median
 • Matrix Multiplication
Approximation Algorithms
How to deal with NP-complete Problem

Many of the important problems in real world are NP-complete.

SAT, Set Cover, Graph Coloring, TSP, Max IND Set, Vertex Cover, …

So, we cannot find optimum solutions in polynomial time. What to do instead?

• Find optimum solution of special cases (e.g., random inputs)

• Find near optimum solution in the worst case
Approximation Algorithm

Polynomial-time Algorithms with a guaranteed approximation ratio.

\[\alpha = \frac{\text{Cost of computed solution}}{\text{Cost of the optimum}} \]

worst case over all instances.

Goal: For each NP-hard problem find an approximation algorithm with the best possible approximation ratio.
Given a graph $G=(V,E)$, Find smallest set of vertices touching every edge
Greedy algorithms are typically used in practice to find a (good) solution to NP-hard problems

Strategy (1): Iteratively, include a vertex that covers most new edges

Q: Does this give an optimum solution?
A: No,
Greedy (1): Pick vertex that covers the most

Greedy Vertex cover = 20
OPT Vertex cover = 8
Greedy (1): Pick vertex that covers the most

n vertices. Each vertex has one edge into each B_i

<table>
<thead>
<tr>
<th>B_n</th>
<th>B_{n-1}</th>
</tr>
</thead>
</table>

Each vertex in B_i has i edges to top

Greedy pick bottom vertices $= n + \frac{n}{2} + \frac{n}{3} + \cdots + 1 \approx n \ln n$

OPT pick top vertices $= n$
A Different Greedy Rule

Greedy 2: Iteratively, pick both endpoints of an uncovered edge.

Vertex cover = 6
Greedy 2: Pick Both endpoints of an uncovered edge

Greedy vertex cover = 16

OPT vertex cover = 8
Greedy (2) gives 2-approximation

Thm: Size of greedy (2) vertex cover is at most twice as big as size of optimal cover

Pf: Suppose Greedy (2) picks endpoints of edges $e_1, ..., e_k$. Since these edges do not touch, every valid cover must pick one vertex from each of these edges!

i.e., $OPT \geq k$.

But the size of greedy cover is $2k$. So, Greedy is a 2-approximation.
Set Cover

Given a number of sets on a ground set of elements,

Goal: choose minimum number of sets that cover all.

e.g., a company wants to hire employees with certain skills.
Set Cover

Given a number of sets on a ground set of elements,

Goal: choose minimum number of sets that cover all.

Set cover = 4
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes number of new elements covered.
A Greedy Algorithm

Strategy: Pick the set that maximizes \# new elements covered

Thm: Greedy has $\ln n$ approximation ratio
A Tight Example for Greedy

Greedy = 5

OPT = 2
Greedy Gives $O(\log(n))$ approximation

Thm: If the best solution has k sets, greedy finds at most $k \ln(n)$ sets.

Pf: Suppose $\text{OPT} = k$
There is set that covers $1/k$ fraction of remaining elements, since there are k sets that cover all remaining elements. So in each step, algorithm will cover $1/k$ fraction of remaining elements.

elements uncovered after t steps

$$\leq n \left(1 - \frac{1}{k}\right)^t \leq ne^{-\frac{t}{k}}$$

So after $t = k \ln n$ steps, # uncovered elements < 1.