1 Set Cover

We now design an approximation algorithm for the set cover problem.

Recall \([n] = \{1, \ldots, n\}\). You are given a collection of sets \(S_1, \ldots, S_m \subseteq [n]\), such that \(\cup_i S_i = [n]\). The goal is to find the smallest subcollection that includes all the elements. The set cover problem is a generalization of the vertex cover problem. You can think of each vertex as a set of its connecting edges.

The problem has many applications in practice. For example, think of the a startup who needs a number skills including marketing, software developing, accounting, data science, design, UI, etc. Each applicant may have a number of these skills. The startup wants to hire a minimum number of these applicants to include all the critical skills that it needs. There is also a natural weighted variant of the problem where each set has a weight and we want to choose a subcollection of the sets with the smallest weight.

Consider the following greedy algorithm. We show that its approximation ratio is at most \(\ln n\).

```
Input: A collection of sets \(S_1, \ldots, S_m \subseteq [n]\), such that \(\cup_i S_i = [n]\)
Result: A small collection of sets whose union covers \([n]\).
Let \(T = \emptyset\);
while \(\cup_{i \in T} S_i \neq [n]\) do
    | If \(S_j\) maximizes \(S_j \cap ([n] - \cup_{i \in T} S_i)\), add \(j\) to \(T\);
end
Output \(T\).
```

Algorithm 1: Greedy Set Cover algorithm

Claim 1. If the smallest cover has \(k\) sets, then the algorithm finds a cover with at most \(k \ln n\) sets.

Proof Suppose the OPT has \(k\) sets. Consider an iteration \(i\) of the while loop. Let \(R = [n] - \cup_{i \in T} S_i\) be the set of remaining elements. Note that \(R \subseteq [n]\). Since OPT covers \([n]\) it also covers \(R\) with \(k\) sets. Therefore, there must be a set in OPT that covers at least \(1/k\) fraction of elements of \(R\). Since Greedy chooses the set that covers the largest fraction of elements of \(R\), the set that Greedy chooses also covers at least \(1/k\) fraction of elements of \(R\).

Now, let us calculate how the number of remaining elements changes over the iterations of the algorithm. At the beginning we have \(n\). After 1 iteration (at least) \(n/k\) elements are covered so we have at most \(n(1 - 1/k)\) elements. In the second iteration (at least) \(n(1 - 1/k) - n(1 - 1/k^2)\) elements are covered so we will have (most)\(n(1 - 1/k) - \frac{n(1 - 1/k)}{k} = n(1 - 1/k)(1 - 1/k) = n(1 - 1/k)^2\).
Similarly, after the \(i \)-th iteration of the while loop at most \(n(1 - 1/k)^i \) elements are remained. Observe that we will definitely stop (and cover everything) when \(n(1 - 1/k)^i < 1 \) or equivalently, when \((1 - 1/k)^i < 1/n \).

So, the question is how large \(i \) should be such that \((1 - 1/k)^i < 1/n \). Here we use the following inequality without proof: For all \(x \geq 0 \),

\[
1 - x \leq e^{-x}.
\]

This can be proven by writing down the Taylor series expansion of the exponential function. It follows that

\[
(1 - 1/k)^i \leq e^{-i/k}.
\]

So, for \(i = k \ln n \) we have

\[
(1 - /k)^i \leq e^{-k \ln n/k} = e^{-\ln n} = 1/n
\]

as desired. \(\square \)

The above analysis for the algorithm is in fact tight. To see this, suppose the \(n \) elements are party of \(k \) disjoint sets \(S_1, \ldots, S_k \), where the \(i \)th set has exactly \(2^i \) elements. Thus \(n = 2 + 4 + \ldots + 2^k = 2^{k+1} - 2 \). Now add two more sets \(A, B \) which are disjoint. \(A \) contains half of the elements of every \(S_i \), and \(B \) contains the other half. So \(|A| = |B| = 2^k - 1 \). The algorithm will pick the \(k \) sets \(S_1, \ldots, S_k \) as the set cover, even though \(A, B \) are also a set cover.

No better efficient algorithm is known for this problem. In fact, it is proven to be impossible to break the \(\Theta(\log n) \) approximation ratio assuming \(\text{NP} \neq \text{P} \).