Closest Pair of Points (2-dimensions)

Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.
 Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
 Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force: Check all pairs of points p and q with $\Theta(n^2)$ time.

Assumption: No two points have same x coordinate.
A Divide and Conquer Alg

Divide: draw vertical line L with $\approx \frac{n}{2}$ points on each side.

Conquer: find closest pair on each side, recursively.

Combine to find closest pair overall

Return best solutions

It seems like $\Theta(n^2)$?
Key Observation

Suppose δ is the minimum distance of all pairs in left/right of L.

$$\delta = \min(12, 21) = 12.$$

Key Observation: suffices to consider points within δ of line L.

Almost the one-D problem again: Sort points in 2δ-strip by their y coordinate.

Only check pts within 11 in sorted list!
Almost 1D Problem

Partition each side of L into $\frac{\delta}{2} \times \frac{\delta}{2}$ squares

Claim: No two points lie in the same $\frac{\delta}{2} \times \frac{\delta}{2}$ box.

Pf: Such points would be within

$$\sqrt{\left(\frac{\delta}{2}\right)^2 + \left(\frac{\delta}{2}\right)^2} = \delta \sqrt{\frac{1}{2}} \approx 0.7\delta < \delta$$

Let s_i have the i^{th} smallest y-coordinate among points in the 2δ-width-strip.

Claim: If $|i - j| > 11$, then the distance between s_i and s_j is $> \delta$.

Pf: only 11 boxes within δ of $y(s_i)$.
Recap: Finding Closest Pair

Point 42 has distance at least 2δ from point 30.

At most 11 points ahead of 30 have distance $< \delta$ from it.

So, enough to check distance
Distance of 30 to 19…41.
Closest Pair (2Dim Algorithm)

Closest-Pair(p₁, ..., pₙ) {
 if(n <= ??) return ??

 Compute separation line L such that half the points
 are on one side and half on the other side.

 \[\delta_1 = \text{Closest-Pair(left half)} \]
 \[\delta_2 = \text{Closest-Pair(right half)} \]
 \[\delta = \min(\delta_1, \delta_2) \]

 Delete all points further than \(\delta \) from separation line L

 Sort remaining points p[1]...p[m] by y-coordinate.

 for i = 1..m
 for k = 1...11
 if i+k <= m
 \[\delta = \min(\delta, \text{distance}(p[i], p[i+k])) \];

 return \(\delta \).}
Closest Pair Analysis I

Let $D(n)$ be the number of pairwise distance calculations in the Closest-Pair Algorithm when run on $n \geq 1$ points.

$$D(n) \leq \begin{cases}
1 & \text{if } n = 1 \\
2D\left(\frac{n}{2}\right) + 11n & \text{o.w.} \Rightarrow D(n) = O(n \log n)
\end{cases}$$

BUT, that’s only the number of distance calculations. What if we counted running time?

$$T(n) \leq \begin{cases}
1 & \text{if } n = 1 \\
2T\left(\frac{n}{2}\right) + O(n \log n) & \text{o.w.} \Rightarrow D(n) = O(n \log^2 n)
\end{cases}$$
Can we do better? (Analysis II)

Yes!!

Don’t sort by y-coordinates each time.
Sort by x at top level only.

This is enough to divide into two equal subproblems in $O(n)$
Each recursive call returns δ and list of all points sorted by y
Sort points by y-coordinate by merging two pre-sorted lists.

$$T(n) \leq \begin{cases}
1 & \text{if } n = 1 \\
2T\left(\frac{n}{2}\right) + O(n) & \text{o.w.}
\end{cases} \Rightarrow D(n) = O(n \log n)$$
Master Theorem

Suppose \(T(n) = a \, T \left(\frac{n}{b} \right) + cn^k \) for all \(n > b \). Then,

- If \(a > b^k \) then \(T(n) = \Theta(n^{\log_b a}) \)
- If \(a < b^k \) then \(T(n) = \Theta(n^k) \)
- If \(a = b^k \) then \(T(n) = \Theta(n^k \log n) \)

Works even if it is \(\left\lceil \frac{n}{b} \right\rceil \) instead of \(\frac{n}{b} \).

We also need \(a \geq 1, b > 1, k \geq 0 \) and \(T(n) = O(1) \) for \(n \leq b \).
Proving Master Theorem

Problem size

\[T(n) = aT(n/b) + cn^k \]

\[\text{# probs} \quad \text{cost} \]

1 \quad \text{cn}^k

\begin{align*}
\text{d} &= \log_b n \\
\text{a}^d &= c \cdot n^k (a/b^k)^d
\end{align*}

\[T(n) = cn^k \sum_{i=0}^{d=\log_b n} \left(\frac{a}{b^k} \right)^i \]
A Useful Identity

Theorem: \(1 + x + x^2 + \cdots + x^d = \frac{x^{d+1} - 1}{x - 1}\)

Pf: Let \(S = 1 + x + x^2 + \cdots + x^d\)

Then, \(xS = x + x^2 + \cdots + x^{d+1}\)

So, \(xS - S = x^{d+1} - 1\)
i.e., \(S(x - 1) = x^{d+1} - 1\)
Therefore,
\[S = \frac{x^{d+1} - 1}{x - 1}\]
Solve: \(T(n) = aT \left(\frac{n}{b} \right) + cn^k, \ a > b^k \)

\[
T(n) = cn^k \sum_{i=0}^{\log_b n} \left(\frac{a}{b^k} \right)^i \\
= cn^k \left(\frac{a}{b^k} \right)^{\log_b n+1} - 1 \\
= c \left(\frac{n^k}{b^k \log_b n} \right) \frac{a}{b^k} - 1 \]

\[
\leq c' a^{\log_b n} = O(n^{\log_b a})
\]

\[
x^{d+1-1} \quad \text{for } x = \frac{a}{b^k} \\
d = \log_b n \quad \text{using } x \neq 1
\]
Solve: \(T(n) = aT \left(\frac{n}{b} \right) + cn^k, \ a = b^k \)

\[
T(n) = cn^k \sum_{i=0}^{\log_b n} \left(\frac{a}{b^k} \right)^i \\
= cn^k \log_b n
\]
Master Theorem

Suppose \(T(n) = a T \left(\frac{n}{b} \right) + cn^k \) for all \(n > b \). Then,

- If \(a > b^k \) then \(T(n) = \Theta(n^{\log_b a}) \)
- If \(a < b^k \) then \(T(n) = \Theta(n^k) \)
- If \(a = b^k \) then \(T(n) = \Theta(n^k \log n) \)

Works even if it is \(\left\lceil \frac{n}{b} \right\rceil \) instead of \(\frac{n}{b} \).

We also need \(a \geq 1, b > 1, k \geq 0 \) and \(T(n) = O(1) \) for \(n \leq b \).
Integer Multiplication
Integer Arithmetic

Add: Given two n-bit integers \(a \) and \(b \), compute \(a + b \).

\[
\begin{array}{cccccccc}
\quad & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
+ & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
\hline
1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0
\end{array}
\]

\(O(n) \) bit operations.

Multiply: Given two n-bit integers \(a \) and \(b \), compute \(a \times b \).

The “grade school” method:

\(O(n^2) \) bit operations.
How to use Divide and Conquer?

Suppose we want to multiply two 2-digit integers (32,45). We can do this by multiplying four 1-digit integers. Then, use add/shift to obtain the result:

\[
x = 10x_1 + x_0 \\
y = 10y_1 + y_0 \\
xy = (10x_1 + x_0)(10y_1 + y_0) \\
 = 100x_1y_1 + 10(x_1y_0 + x_0y_1) + x_0y_0
\]

Same idea works when multiplying n-digit integers:
- Divide into 4 n/2-digit integers.
- Recursively multiply
- Then merge solutions
A Divide and Conquer for Integer Mult

Let x, y be two n-bit integers

Write $x = 2^{n/2}x_1 + x_0$ and $y = 2^{n/2}y_1 + y_0$

where x_0, x_1, y_0, y_1 are all $n/2$-bit integers.

Therefore,

$$x = 2^{n/2} \cdot x_1 + x_0$$
$$y = 2^{n/2} \cdot y_1 + y_0$$
$$xy = (2^{n/2} \cdot x_1 + x_0)(2^{n/2} \cdot y_1 + y_0)$$
$$= 2^n \cdot x_1y_1 + 2^{n/2} \cdot (x_1y_0 + x_0y_1) + x_0y_0$$

We only need 3 values $x_1y_1, x_0y_0, x_1y_0 + x_0y_1$

Can we find all 3 by only 3 multiplication?

So,

$$T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n)$$

Therefore,

$$T(n) = \Theta(n^2).$$
Key Trick: 4 multiplies at the price of 3

\[x = 2^{n/2} \cdot x_1 + x_0 \]
\[y = 2^{n/2} \cdot y_1 + y_0 \]
\[xy = (2^{n/2} \cdot x_1 + x_0)(2^{n/2} \cdot y_1 + y_0) \]
\[= 2^n \cdot x_1y_1 + 2^{n/2} (x_1y_0 + x_0y_1) + x_0y_0 \]

\[\alpha = x_1 + x_0 \]
\[\beta = y_1 + y_0 \]
\[\alpha \beta = (x_1 + x_0)(y_1 + y_0) \]
\[= x_1y_1 + (x_1y_0 + x_0y_1) + x_0y_0 \]
\[(x_1y_0 + x_0y_1) = \alpha \beta - x_1y_1 - x_0y_0 \]
Key Trick: 4 multiplies at the price of 3

Theorem [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $O(n^{1.585\ldots})$ bit operations.

To multiply two n-bit integers:

Add two $n/2$ bit integers.
Multiply three $n/2$-bit integers.
Add, subtract, and shift $n/2$-bit integers to obtain result.

$$T(n) = 3T\left(\frac{n}{2}\right) + O(n) \Rightarrow T(n) = O(n^{\log_2 3}) = O(n^{1.585\ldots})$$
Integer Multiplication (Summary)

- Naïve: \(\Theta(n^2) \)
- Karatsuba: \(\Theta(n^{1.585\ldots}) \)

- **Amusing exercise**: generalize Karatsuba to do 5 size \(n/3 \) subproblems. This gives \(\Theta(n^{1.46\ldots}) \) time algorithm

- Best known algorithm runs in \(\Theta(n \log n) \) using fast Fourier transform but mostly unused in practice (unless you need really big numbers - a billion digits of \(\pi \), say)

- Best lower bound \(O(n) \): A fundamental open problem
Median
Selecting k-th smallest

Problem: Given numbers $x_1, ..., x_n$ and an integer $1 \leq k \leq n$ output the k-th smallest number

$$\text{Sel}(\{x_1, ..., x_n\}, k)$$

A simple algorithm: Sort the numbers in time $O(n \log n)$ then return the k-th smallest in the array.

Can we do better?

Yes, in time $O(n)$ if $k = 1$ or $k = 2$.

Can we do $O(n)$ for all possible values of k?

Assume all numbers are distinct for simplicity.
An Idea

Choose a number w from $x_1, ..., x_n$

Define

- $S_<(w) = \{x_i : x_i < w\}$
- $S_=(w) = \{x_i : x_i = w\}$
- $S_>(w) = \{x_i : x_i > w\}$

Can be computed in linear time

Solve the problem recursively as follows:

- If $k \leq |S_<(w)|$, output $\text{Sel}(S_<(w), k)$
- Else if $k \leq |S_<(w)| + |S_=(w)|$, output w
- Else output $\text{Sel}(S_>(w), k - |S_<(w)| - |S_=(w)|)$

Ideally want $|S_<(w)|, |S_>(w)| \leq n/2$. In this case ALG runs in $O(n) + O\left(\frac{n}{2}\right) + O\left(\frac{n}{4}\right) + \cdots + O(1) = O(n)$.
How to choose w?

Suppose we choose w uniformly at random similar to the pivot in quicksort. Then, \(\mathbb{E}[|S_<(w)|] = \mathbb{E}[|S_>(w)|] = n/2 \). Algorithm runs in \(O(n) \) in expectation.

Can we get \(O(n) \) running time deterministically?
- Partition numbers into sets of size 3.
- Sort each set (takes \(O(n) \))
- \(w = Sel(midpoints, n/6) \)
How to lower bound $|S_{<}(w)|$, $|S_{>}(w)|$?

- $|S_{<}(w)| \geq 2 \left(\frac{n}{6} \right) = \frac{n}{3}$
- $|S_{>}(w)| \geq 2 \left(\frac{n}{6} \right) = \frac{n}{3}$.

So, what is the running time?
Asymptotic Running Time?

- If $k \leq |S_<(w)|$, output $Sel(S_<(w), k)$
- Else if $k \leq |S_<(w)| + |S_=(w)|$, output w
- Else output $Sel(S_>(w), k - |S_<(w)| - |S_=(w)|)$

Where $\frac{n}{3} \leq |S_<(w)|, |S_>(w)| \leq \frac{2n}{3}$

\[
T(n) = T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + O(n) \Rightarrow T(n) = O(n \log n)
\]

O(n\log n) again?
So, what is the point?
An Improved Idea

Partition into \(n/5 \) sets. Sort each set and set \(w = Sel(midpoints, n/10) \)

- \(|S_{<}(w)| \geq 3 \left(\frac{n}{10} \right) = \frac{3n}{10} \)
- \(|S_{>}(w)| \geq 3 \left(\frac{n}{10} \right) = \frac{3n}{10} \)

\[
T(n) = T \left(\frac{n}{5} \right) + T \left(\frac{7n}{10} \right) + O(n) \Rightarrow T(n) = O(n)
\]
An Improved Idea

Sel(S, k) {
 n ← |S|
 If (n < ??) return ??
 Partition S into n/5 sets of size 5
 Sort each set of size 5 and let M be the set of medians, so |M|=n/5
 Let w=Sel(M,n/10)
 For i=1 to n{
 If x_i < w add x to S_<w)
 If x_i > w add x to S>_w)
 If x_i = w add x to S_±(w)
 }
 If (k ≤ |S_<w)|) return Sel(S_<w), k)
 else if (k ≤ |S_<w| + |S_±(|w)|) return w;
 else
 return Sel(S>_w), k − |S_<w| − |S_±(|w)|)
}
D&C Summary

Idea:

“Two halves are better than a whole”
 • if the base algorithm has super-linear complexity.
“If a little's good, then more's better”
 • repeat above, recursively

Applications: Many.
 • Binary Search, Merge Sort, (Quicksort),
 • Root of a Function
 • Closest points,
 • Integer multiplication
 • Median
 • Matrix Multiplication