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Closest Pair of Points (2-dimensions)
Given n points in the plane, find a pair with smallest 
Euclidean distance between them.

Fundamental geometric primitive.
Graphics, computer vision, geographic information systems, molecular 

modeling, air traffic control.
Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force: Check all pairs of points p and q with Q(n2) 
time.

Assumption:  No two points have same x coordinate.



A Divide and Conquer Alg
Divide: draw vertical line L with ≈ n/2 points on each 

side.
Conquer:  find closest pair on each side, recursively.

Combine to find closest pair overall

Return best solutions
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Key Observation
Suppose 𝛿 is the minimum distance of all pairs in left/right of L.

𝛿 = min 12,21 = 12.
Key Observation: suffices to consider points within d of line L.
Almost the one-D problem again: Sort points in 2d-strip by their y 

coordinate. 
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Only check pts within 11 in sorted list!



Almost 1D Problem
Partition each side of L into !

"
× !
"

squares

Claim: No two points lie in the same !
"
× !
"

box.
Pf:  Such points would be within

!
"

"
+ !

"

"
= 𝛿 #

"
≈ 0.7𝛿 < 𝛿

Let si have the ith smallest y-coordinate 
among points in the 2𝛿-width-strip.

Claim:  If 𝑖 − 𝑗 > 11, then the distance 
between  si and sj is > 𝛿.
Pf: only 11 boxes within d of y(si). 
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Recap: Finding Closest Pair

So, enough to check distance
Distance of 30 to 19…41.
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At most 11 points
ahead of 30 have 

distance < 𝛿 from it.

Sorted based on y

Point 42 has distance at
least  2𝛿 from point 30.



Closest Pair (2Dim Algorithm)

i

Closest-Pair(p1, …, pn) {
if(n <= ??) return ??

Compute separation line L such that half the points
are on one side and half on the other side.

d1 = Closest-Pair(left half)
d2 = Closest-Pair(right half)
d = min(d1, d2)

Delete all points further than d from separation line L

Sort remaining points p[1]…p[m] by y-coordinate.

for i = 1..m
for k = 1…11
if i+k <= m

d = min(d, distance(p[i], p[i+k]));

return d.
}



Closest Pair Analysis I
Let D(n) be the number of pairwise distance calculations in 
the Closest-Pair Algorithm when run on n ³ 1 points

𝐷 𝑛 ≤ $
1 if 𝑛 = 1
2𝐷

𝑛
2 + 11 𝑛 o.w. ⇒ 𝐷 𝑛 = O(𝑛log 𝑛)

BUT, that’s only the number of distance calculations
What if we counted running time?

𝑇 𝑛 ≤ $
1 if 𝑛 = 1
2𝑇

𝑛
2
+ 𝑂(𝑛 log 𝑛) o.w. ⇒ 𝐷 𝑛 = O(𝑛log! 𝑛)



Can we do better? (Analysis II)
Yes!!

Don’t sort by y-coordinates each time.
Sort by x at top level only.

This is enough to divide into two equal subproblems in O(n)
Each recursive call returns d and list of all points sorted by y
Sort points by y-coordinate by merging two pre-sorted lists.

𝑇 𝑛 ≤ $
1 if 𝑛 = 1
2𝑇

𝑛
2 + 𝑂 𝑛 o.w. ⇒ 𝐷 𝑛 = 𝑂(𝑛 log 𝑛)



Master Theorem
Suppose 𝑇 𝑛 = 𝑎 𝑇 "

# + 𝑐𝑛$ for all 𝑛 > 𝑏. Then,

• If 𝑎 > 𝑏$ then 𝑇 𝑛 = Θ 𝑛%&'!(

• If 𝑎 < 𝑏$ then 𝑇 𝑛 = Θ 𝑛$

• If 𝑎 = 𝑏$ then 𝑇 𝑛 = Θ 𝑛$log 𝑛

Works even if it is "# instead of "# .

We also need 𝑎 ≥ 1, 𝑏 > 1 , 𝑘 ≥ 0 and 𝑇 𝑛 = 𝑂(1) for 𝑛 ≤ 𝑏.



Proving Master Theorem

𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑐𝑛𝑘
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A Useful Identity

Theorem: 1 + 𝑥 + 𝑥! +⋯+ 𝑥) = *"#$+,
*+,

Pf: Let 𝑆 = 1 + 𝑥 + 𝑥! +⋯+ 𝑥)

Then, 𝑥𝑆 = 𝑥 + 𝑥! +⋯+ 𝑥)-,

So,  𝑥𝑆 − 𝑆 = 𝑥)-, − 1
i.e., 𝑆 𝑥 − 1 = 𝑥)-, − 1
Therefore, 

𝑆 =
𝑥)-, − 1
𝑥 − 1



Solve: 𝑇 𝑛 = 𝑎𝑇 !
"
+ 𝑐𝑛#, 𝑎 > 𝑏#

𝑇 𝑛 = 𝑐𝑛$E
./0

%&'! " 𝑎
𝑏$

.

= 𝑐𝑛$
𝑎
𝑏$

%&'! "-,
− 1

𝑎
𝑏$ − 1

"!"##$
"#$

for 𝑥 = %
&$

𝑑 = log& 𝑛
using 𝑥 ≠ 1

= 𝑐
𝑛$

𝑏$ %&'! "

𝑎
𝑏$
𝑎
𝑏$ − 1

𝑎%&'! "

≤ 𝑐′ 𝑎%&'! " = 𝑂(𝑛%&'! ()

𝑏' ()*% +

= 𝑏()*% + '

= 𝑛'
𝑎()*% +
= (𝑏()*% %)()*% +
= (𝑏()*% +)()*% %
= 𝑛()*% %



Solve: 𝑇 𝑛 = 𝑎𝑇 !
"
+ 𝑐𝑛#, 𝑎 = 𝑏#

𝑇 𝑛 = 𝑐𝑛$E
./0

%&'! " 𝑎
𝑏$

.

= 𝑐𝑛$ log# 𝑛



Master Theorem
Suppose 𝑇 𝑛 = 𝑎 𝑇 "

# + 𝑐𝑛$ for all 𝑛 > 𝑏. Then,

• If 𝑎 > 𝑏$ then 𝑇 𝑛 = Θ 𝑛%&'!(

• If 𝑎 < 𝑏$ then 𝑇 𝑛 = Θ 𝑛$

• If 𝑎 = 𝑏$ then 𝑇 𝑛 = Θ 𝑛$log 𝑛

Works even if it is "# instead of "# .

We also need 𝑎 ≥ 1, 𝑏 > 1 , 𝑘 ≥ 0 and 𝑇 𝑛 = 𝑂(1) for 𝑛 ≤ 𝑏.



Integer Multiplication



Integer Arithmetic
Add: Given two n-bit integers 
a and b, compute a + b.

Multiply: Given two n-bit 
integers a and b, compute a × b.
The “grade school” method:  
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00000000

O(n) bit operations.

𝑂(𝑛") bit operations.



How to use Divide and Conquer?
Suppose we want to multiply two 2-digit integers (32,45).
We can do this by multiplying four 1-digit integers
Then, use add/shift to obtain the result:

Same idea works when multiplying n-digit integers: 
• Divide into 4 n/2-digit integers.
• Recursively multiply
• Then merge solutions
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A Divide and Conquer for Integer Mult
Let 𝑥, 𝑦 be two n-bit integers
Write 𝑥 = 2"/!𝑥, + 𝑥0 and 𝑦 = 2"/!𝑦, + 𝑦0

where 𝑥0, 𝑥,, 𝑦0, 𝑦, are all n/2-bit integers.

Therefore, 
𝑇 𝑛 = 4𝑇

𝑛
2
+ Θ(𝑛)

So, 
𝑇 𝑛 = Θ 𝑛! .

𝑥 = 2-/" ⋅ 𝑥# + 𝑥(
𝑦 = 2-/" ⋅ 𝑦# + 𝑦(
𝑥𝑦 = 2-/" ⋅ 𝑥# +𝑥( 2-/" ⋅ 𝑦# + 𝑦(

= 2- ⋅ 𝑥#𝑦# + 2 ⁄- " ⋅ 𝑥#𝑦( + 𝑥(𝑦# + 𝑥(𝑦(
We only need 3 values
𝑥$𝑦$, 𝑥,𝑦,, 𝑥$𝑦, + 𝑥,𝑦$

Can we find all 3 by only
3 multiplication?



Key Trick: 4 multiplies at the price of 3

𝑥 = 2-/" ⋅ 𝑥# + 𝑥(
𝑦 = 2-/" ⋅ 𝑦# + 𝑦(
𝑥𝑦 = 2-/" ⋅ 𝑥# +𝑥( 2-/" ⋅ 𝑦# + 𝑦(

= 2- ⋅ 𝑥#𝑦# + 2 ⁄- " ⋅ 𝑥#𝑦( + 𝑥(𝑦# + 𝑥(𝑦(

𝛼 = 𝑥# + 𝑥(
𝛽 = 𝑦# + 𝑦(
𝛼𝛽 = 𝑥# + 𝑥( 𝑦# + 𝑦(

= 𝑥#𝑦# + 𝑥#𝑦( + 𝑥(𝑦# + 𝑥(𝑦(
𝑥#𝑦( + 𝑥(𝑦# = 𝛼𝛽 − 𝑥#𝑦# − 𝑥(𝑦(



Key Trick: 4 multiplies at the price of 3
Theorem [Karatsuba-Ofman, 1962] Can multiply two n-digit 
integers in O(n1.585…) bit operations.

To multiply two n-bit integers:
Add two n/2 bit integers.
Multiply three n/2-bit integers.
Add, subtract, and shift n/2-bit integers to obtain result.

𝑇 𝑛 = 3𝑇
𝑛
2
+ 𝑂 𝑛 ⇒ 𝑇 𝑛 = 𝑂 𝑛%&'% B = 𝑂(𝑛,.DED…)

𝑥 = 2-/" ⋅ 𝑥# + 𝑥( ⇒ 𝛼 = 𝑥# + 𝑥(
𝑦 = 2-/" ⋅ 𝑦# + 𝑦( ⇒ 𝛽 = 𝑦# + 𝑦(
𝑥𝑦 = 2-/" ⋅ 𝑥# +𝑥( 2-/" ⋅ 𝑦# + 𝑦(

= 2- ⋅ 𝑥#𝑦# + 2 ⁄- " ⋅ 𝑥#𝑦( + 𝑥(𝑦# + 𝑥(𝑦(
A B𝛼𝛽 − 𝐴 − 𝐵



Integer Multiplication (Summary)
• Naïve: Θ(𝑛2)

• Karatsuba: Θ(𝑛,.DED…)

• Amusing exercise: generalize Karatsuba to do 5 size 
n/3 subproblems 

This gives Θ 𝑛#.%&… time algorithm

• Best known algorithm runs in Θ(𝑛 log 𝑛) using fast Fourier 
transform 
but mostly unused in practice (unless you need really big numbers - a billion 

digits of p, say)

• Best lower bound 𝑂(𝑛): A fundamental open problem



Median



Selecting k-th smallest
Problem: Given numbers 𝑥,, … , 𝑥" and an integer 1 ≤ 𝑘 ≤ 𝑛

output the 𝑘-th smallest number
Sel( 𝑥,, … , 𝑥" , 𝑘)

A simple algorithm: Sort the numbers in time O(n log n) then 
return the k-th smallest in the array.

Can we do better?

Yes, in time 𝑂(𝑛) if 𝑘 = 1 or 𝑘 = 2.

Can we do 𝑂 𝑛 for all possible values of k?

Assume all numbers are distinct for simplicity.



An Idea
Choose a number 𝑤 from 𝑥,, … , 𝑥"
Define
• 𝑆G 𝑤 = 𝑥.: 𝑥. < 𝑤
• 𝑆/ 𝑤 = 𝑥.: 𝑥. = 𝑤
• 𝑆H 𝑤 = 𝑥.: 𝑥. > 𝑤

Solve the problem recursively as follows:
• If 𝑘 ≤ |𝑆G(𝑤)|, output 𝑆𝑒𝑙(𝑆G 𝑤 , 𝑘)
• Else if 𝑘 ≤ 𝑆G 𝑤 + 𝑆/ 𝑤 , output w
• Else output 𝑆𝑒𝑙(𝑆H 𝑤 , 𝑘 − |𝑆G 𝑤 | − |𝑆/ 𝑤 |)

Ideally want 𝑆G 𝑤 , |𝑆H(𝑤)| ≤ 𝑛/2. In this case ALG runs in 
𝑂 𝑛 + 𝑂 "

! + 𝑂 "
I +⋯+ 𝑂 1 = 𝑂 𝑛 .

Can be computed in 
linear time



How to choose w?
Suppose we choose w uniformly at random 

similar to the pivot in quicksort.
Then, 𝔼 𝑆( 𝑤 = 𝔼 𝑆) 𝑤 = 𝑛/2. Algorithm runs in 𝑂(𝑛) in 

expectation.
Can we get 𝑂(𝑛) running time deterministically?
• Partition numbers into sets of size 3.
• Sort each set (takes O(n))
• 𝑤 = 𝑆𝑒𝑙(𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛/6)
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• 𝑆G 𝑤 ≥ 2 "
J = "

B

• 𝑆H 𝑤 ≥ 2 "
J = "

B .

So, what is the running time?

How to lower bound 𝑆! 𝑤 , |𝑆" 𝑤 |?
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• If 𝑘 ≤ |𝑆((𝑤)|, output 𝑆𝑒𝑙(𝑆( 𝑤 , 𝑘)
• Else if 𝑘 ≤ 𝑆( 𝑤 + 𝑆* 𝑤 , output w
• Else output 𝑆𝑒𝑙(𝑆) 𝑤 , 𝑘 − 𝑆( 𝑤 − 𝑆* 𝑤 )

Where +
,
≤ 𝑆( 𝑤 , 𝑆) 𝑤 ≤ "+

,

𝑇 𝑛 = 𝑇
𝑛
3
+ 𝑇

2𝑛
3

+ 𝑂 𝑛 ⇒ 𝑇 𝑛 = 𝑂(𝑛 log 𝑛)

Asymptotic Running Time?
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O(nlog n) again? 
So, what is the point?



Partition into n/5 sets. Sort each set and set 𝑤 = 𝑆𝑒𝑙(𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛/10)

• 𝑆G 𝑤 ≥ 3 "
,0 = B"

,0

• 𝑆H 𝑤 ≥ 3 "
,0

= B"
,0

𝑇 𝑛 = 𝑇
𝑛
5
+ 𝑇

7𝑛
10

+ 𝑂 𝑛 ⇒ 𝑇 𝑛 = 𝑂(𝑛)

An Improved Idea
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An Improved Idea
Sel(S, k) {

𝒏 ← 𝑺
If (n < ??) return ??
Partition S into n/5 sets of size 5
Sort each set of size 5 and let M be the set of medians, so 

|M|=n/5
Let w=Sel(M,n/10)
For i=1 to n{

If 𝒙𝒊 < 𝒘 add x to 𝑺" 𝒘
If 𝒙𝒊 > 𝒘 add x to 𝑺# 𝒘
If 𝒙𝒊 = 𝒘 add x to 𝑺$(𝒘)

}
If (𝒌 ≤ |𝑺" 𝒘 |)

return Sel(𝑺" 𝒘 ,𝒌)
else if (𝒌 ≤ 𝑺" 𝒘 + |𝑺$ 𝒘 |)

return w;
else

return Sel(𝑺# 𝒘 ,𝒌 − 𝑺" 𝒘 − |𝑺$(𝒘)|)
}

We can maintain each
set in an array 



D&C Summary
Idea:

“Two halves are better than a whole”
• if the base algorithm has super-linear complexity.

“If a little's good, then more's better”
• repeat above, recursively

• Applications: Many.  
• Binary Search, Merge Sort, (Quicksort), 
• Root of a Function
• Closest points, 
• Integer multiplication
• Median
• Matrix Multiplication


