
CSE 421

Divide and Conquer: Finding Root
Closest Pair of Points

Shayan Oveis Gharan

1

Finding the Root of a Function

Finding the Root of a Function
Given a continuous function f and two points a < b such that

𝑓 𝑎 ≤ 0
𝑓 𝑏 ≥ 0

Find an approximate root of f (a point 𝑐 where 𝑓 𝑐 = 0).

f has a root in [𝑎, 𝑏] by
intermediate value theorem

Note that roots of f may be irrational,
So, we want to approximate
the root with an arbitrary precision!

a b

f 𝑥 = sin 𝑥 − !""
#
+ 𝑥$

A Naiive Approch

Suppose we want 𝜖 approximation to a root.

Divide [a,b] into 𝑛 = !"#
$ intervals. For each interval check

𝑓 𝑥 ≤ 0, 𝑓 𝑥 + 𝜖 ≥ 0

This runs in time 𝑂 𝑛 = 𝑂(!"#$)

Can we do faster?

a b

D&C Approach (Based on Binary Search)
Bisection(a,b, e)

if 𝑏 − 𝑎 < 𝝐 then
return (a)

else
𝑚 ← (𝑎 + 𝑏)/2
if 𝑓 𝑚 ≤ 0 then

return(Bisection(c, b, e))
else

return(Bisection(a, c, e))

a bc

Time Analysis
Let 𝑛 = #"!

$
And 𝑐 = (𝑎 + 𝑏)/2
Always half of the intervals lie to
the left and half lie to the right of c

So,

𝑇 𝑛 = 𝑇 %
& + 𝑂(1)

i.e., 𝑇 𝑛 = 𝑂(log 𝑛) = 𝑂(log #"!$) a bc
n/2n/2

Correctness Proof
P(k) = “For any 𝑎, 𝑏 such that 𝑘𝜖 ≤ 𝑎 − 𝑏 ≤ (𝑘 + 1)𝜖 if 𝑓 𝑎 𝑓 𝑏 ≤ 0,
then ALG find an 𝜖 approximation to a root of 𝑓”

Base Case: P(1): Output 𝑎 + 𝜖
IH: For some 𝑘 ≥ 1, assume 𝑃(𝑗) for all 1 ≤ 𝑗 ≤ 𝑘 − 1.

IS: Show P(k). Consider an arbitrary 𝑎, 𝑏 s.t.,
𝑘𝜖 ≤ 𝑎 − 𝑏 ≤ 𝑘 + 1 𝜖

Let 𝑚 = 𝑎 + %
&
𝜖.

If 𝑓 a 𝑓 𝑚 ≤ 0, then by P(k/2) on interval 𝑎,𝑚 ALG finds 𝜖
approximation to a root of 𝑓.
Otherwise, we must have 𝑓 𝑏 𝑓 𝑚 ≤ 0 since 𝑓 𝑎 𝑓 𝑏 ≤ 0 and
𝑓 𝑎 𝑓 𝑚 > 0. Therefore, by P(k/2) on interval 𝑚, 𝑏 ALG 𝜖
approximation to a root of 𝑓

Recurrences

Above: Where they come from, how to find them

Next: how to solve them

Master Theorem
Suppose 𝑇 𝑛 = 𝑎 𝑇 %

! + 𝑐𝑛' for all 𝑛 > 𝑏. Then,

• If 𝑎 > 𝑏' then 𝑇 𝑛 = Θ 𝑛()*!#

• If 𝑎 < 𝑏' then 𝑇 𝑛 = Θ 𝑛'

• If 𝑎 = 𝑏' then 𝑇 𝑛 = Θ 𝑛'log 𝑛

Works even if it is %! instead of %! .

We also need 𝑎 ≥ 1, 𝑏 > 1 , 𝑘 ≥ 0 and 𝑇 𝑛 = 𝑂(1) for 𝑛 ≤ 𝑏.

Master Theorem
Suppose 𝑇 𝑛 = 𝑎 𝑇 %

! + 𝑐𝑛' for all 𝑛 > 𝑏. Then,

• If 𝑎 > 𝑏' then 𝑇 𝑛 = Θ 𝑛()*!#

• If 𝑎 < 𝑏' then 𝑇 𝑛 = Θ 𝑛'

• If 𝑎 = 𝑏' then 𝑇 𝑛 = Θ 𝑛'log 𝑛

Example: For mergesort algorithm we have
𝑇 𝑛 = 2𝑇

𝑛
2
+ 𝑂 𝑛 .

So, 𝑘 = 1, 𝑎 = 𝑏' and 𝑇 𝑛 = Θ(𝑛 log 𝑛)

Finding the Closest Pair of Points

Closest Pair of Points (non geometric)
Given n points and arbitrary distances between them, find the
closest pair. (E.g., think of distance as airfare – definitely not
Euclidean distance!)

Must look at all n choose 2 pairwise distances, else
any one you didn’t check might be the shortest.
i.e., you have to read the whole input

(… and all the rest of the (n) edges…)2

Closest Pair of Points (1-dimension)
Given n points on the real line, find the closest pair,

e.g., given 11, 2, 4, 19, 4.8, 7, 8.2, 16, 11.5, 13, 1
find the closest pair

Fact: Closest pair is adjacent in ordered list

So, first sort, then scan adjacent pairs.
Time O(n log n) to sort, if needed, Plus O(n) to scan adjacent
pairs

Key point: do not need to calc distances between all pairs: exploit
geometry + ordering

1 2 4 4.8 7 8.2 11 11.5 13 16 19

Closest Pair of Points (2-dimensions)
Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.
Graphics, computer vision, geographic information systems, molecular

modeling, air traffic control.
Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force: Check all pairs of points p and q with Q(n2)
time.

Assumption: No two points have same x coordinate.

Closest Pair of Points (2-dimensions)
Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.
Graphics, computer vision, geographic information systems, molecular

modeling, air traffic control.
Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force: Check all pairs of points p and q with Q(n2)
time.

Assumption: No two points have same x coordinate.

A Divide and Conquer Alg
Divide: draw vertical line L with ≈ n/2 points on each

side.
Conquer: find closest pair on each side, recursively.

Combine to find closest pair overall

Return best solutions

12

21
8

L

seems like
Q(n2) ?

Key Observation
Suppose 𝛿 is the minimum distance of all pairs in left/right of L.

𝛿 = min 12,21 = 12.
Key Observation: suffices to consider points within d of line L.
Almost the one-D problem again: Sort points in 2d-strip by their y

coordinate.

12

21

L

d=12

7

1

2

3

4
5

6

Only check pts within 11 in sorted list!

Almost 1D Problem
Partition each side of L into '

&
× '
&

squares

Claim: No two points lie in the same '
&
× '
&

box.
Pf: Such points would be within

!
"

"
+ !

"

"
= 𝛿 #

"
≈ 0.7𝛿 < 𝛿

Let si have the ith smallest y-coordinate
among points in the 2𝛿-width-strip.

Claim: If 𝑖 − 𝑗 > 11, then the distance
between si and sj is > 𝛿.
Pf: only 11 boxes within d of y(si).

d

29
30

31

28

26

25

d

½d

½d

39

i

j

27

29

>
𝛿

Closest Pair (2Dim Algorithm)

i

Closest-Pair(p1, …, pn) {
if(n <= ??) return ??

Compute separation line L such that half the points
are on one side and half on the other side.

d1 = Closest-Pair(left half)
d2 = Closest-Pair(right half)
d = min(d1, d2)

Delete all points further than d from separation line L

Sort remaining points p[1]…p[m] by y-coordinate.

for i = 1..m
for k = 1…11
if i+k <= m

d = min(d, distance(p[i], p[i+k]));

return d.
}

Closest Pair Analysis I
Let D(n) be the number of pairwise distance calculations in
the Closest-Pair Algorithm when run on n ³ 1 points

𝐷 𝑛 ≤ D
1 if 𝑛 = 1
2𝐷

𝑛
2 + 11 𝑛 o.w. ⇒ 𝐷 𝑛 = O(𝑛log 𝑛)

BUT, that’s only the number of distance calculations
What if we counted running time?

𝑇 𝑛 ≤ D
1 if 𝑛 = 1
2𝑇

𝑛
2
+ 𝑂(𝑛 log 𝑛) o.w. ⇒ 𝐷 𝑛 = O(𝑛log& 𝑛)

Can we do better? (Analysis II)
Yes!!

Don’t sort by y-coordinates each time.
Sort by x at top level only.

This is enough to divide into two equal subproblems in O(n)
Each recursive call returns d and list of all points sorted by y
Sort points by y-coordinate by merging two pre-sorted lists.

𝑇 𝑛 ≤ D
1 if 𝑛 = 1
2𝑇

𝑛
2 + 𝑂 𝑛 o.w. ⇒ 𝐷 𝑛 = 𝑂(𝑛 log 𝑛)

Proving Master Theorem

𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑐𝑛𝑘

an
Problem size

n/b

n/b2

b

1

d=
lo
g b
n

probs

a2

a

1

ad

=c×nk(a/bk)2

cost
cnk

c×a×nk/bk

c×a2×nk/b2k

c×nk(a/bk)d

𝑇 𝑛 = 𝑐𝑛%2
&'(

)'*+,! - 𝑎
𝑏%

&

A Useful Identity

Theorem: 1 + 𝑥 + 𝑥& +⋯+ 𝑥+ = ,"#$"-
,"-

Pf: Let 𝑆 = 1 + 𝑥 + 𝑥& +⋯+ 𝑥+

Then, 𝑥𝑆 = 𝑥 + 𝑥& +⋯+ 𝑥+.-

So, 𝑥𝑆 − 𝑆 = 𝑥+.- − 1
i.e., 𝑆 𝑥 − 1 = 𝑥+.- − 1
Therefore,

𝑆 =
𝑥+.- − 1
𝑥 − 1

Solve: 𝑇 𝑛 = 𝑎𝑇 !
"
+ 𝑐𝑛#, 𝑎 > 𝑏#

𝑇 𝑛 = 𝑐𝑛'L
/01

()*! % 𝑎
𝑏'

/

= 𝑐𝑛'
𝑎
𝑏'

()*! %.-
− 1

𝑎
𝑏' − 1

"!"##$
"#$

for 𝑥 = %
&$

𝑑 = log& 𝑛
using 𝑥 ≠ 1

≤ 𝑐
𝑛'

𝑏' ()*! %

𝑎
𝑏'
𝑎
𝑏' − 1

𝑎()*! %

≤ 2𝑐 𝑎()*! % = 𝑂(𝑛()*! #)

𝑏' ()*% +

= 𝑏()*% + '

= 𝑛'
𝑎()*% +
= (𝑏()*% %)()*% +
= (𝑏()*% +)()*% %
= 𝑛()*% %

Solve: 𝑇 𝑛 = 𝑎𝑇 !
"
+ 𝑐𝑛#, 𝑎 = 𝑏#

𝑇 𝑛 = 𝑐𝑛'L
/01

()*! % 𝑎
𝑏'

/

= 𝑐𝑛' log! 𝑛

Master Theorem
Suppose 𝑇 𝑛 = 𝑎 𝑇 %

! + 𝑐𝑛' for all 𝑛 > 𝑏. Then,

• If 𝑎 > 𝑏' then 𝑇 𝑛 = Θ 𝑛()*!#

• If 𝑎 < 𝑏' then 𝑇 𝑛 = Θ 𝑛'

• If 𝑎 = 𝑏' then 𝑇 𝑛 = Θ 𝑛'log 𝑛

Works even if it is %! instead of %! .

We also need 𝑎 ≥ 1, 𝑏 > 1 , 𝑘 ≥ 0 and 𝑇 𝑛 = 𝑂(1) for 𝑛 ≤ 𝑏.

