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Boiling Water Example

Q: Given an empty bowl, how do you make boiling water?

« S
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A: Well, | fill it with water, turn on the stove, leave the bowl on
the stove for 20 minutes. | have my boiling water.

Q: Now, suppose you have a bowl of water, how do you make
boiling water?

A: First, | pour water away, now
| have an empty bowl! and
| have already solved this!




Lesson: Never solve a problem twice!
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Dijkstra’s Algorithm: Example
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Disjkstra’s Algorithm: Correctness

Prove by induction that throughout the algorithm, for any u € §,
the path P, in the shortest from s to u.

Base Case: This is always true when S = {s}.
IH: Suppose |S| = k and the claim holds for S

|S: Say v is the k+1-st vertex that
we add to S. Let {u,v} be last edge on B,.
If P, is not the shortest path there
Is a path P to s which is shorter.
Consider the first time that P leaves S
(with edge {x,y}).

S -> x has weight (at least) d(x)

S0, c(P) = d(x) + ¢,y = d(v) = c(B,).
A contradiction.



Remarks on Dijkstra’s Algorithm

« Algorithm also produces a tree of shortest paths to s following
Parent links

« Algorithm works on directed graph (with nonnegative weights)

« The algorithm fails with negative edge weights.
* e.g., some airline tickets

Why does it fail? o

« Dijkstra’s algorithm is similar to BFS:

Subtitute every edge with c, = k with a path of length k, then run BFS.
|

— dide = BFS
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Implementing Dijkstra’s Algorithm

Priority Queue: Elements each with an associated key Operations

e |Insert
 Find-min

— Return the element with the smallest key

* Delete-min

— Return the element with the smallest key and delete it from the data structure

« Decrease-key

— Decrease the key value of some element

Implementations
Arrays:

* O(n) time find/delete-min,
« O(1) time insert/decrease key

Binary Heaps:
* O(log n) time insert/decrease-key/delete-min,
* O(1) time find-min



Dijkstra’s Algorithm

Runs in O((n+m)log n).

Dijkstra(G, c, s) {
foreach (v € V) d[v] « o //This is the key of node v
d[s] < 0
foreach (v € V) insert v onto a priority queue Q
Initialize set of explored nodes S « {s}

while (Q is not empty) { Q)(\)
u < delete min element from Q O(TL) of delete min
//x y

S Sviu) . each in O(log n)
foreach (edge e = (u, v) incident to u)

if ((v ¢ S) and (d[u]+c. < d[Vv]))

d[v] « d[u] + c, <

Decrease key of v to d[v].
Parent(v) <

0 (m) of decrease key,
each runs in O(logn)



Summary (Greedy Algorithms)

Greedy Stays Ahead: Interval Scheduling, Dijkstra’s
algorithm

Structural: Interval Partitioning
Exchange Arguments: MST, Kruskal’s Algorithm,

Data Structures: Union Find, Heap
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Divide and Conquer

Similar to algorithm design by induction, we reduce a
problem to several subproblems.

Typically, each sub-problem is
at most a constant fraction of
the size of the original problem

n

n/2 n/2

Log n levels

: n/4
Recursively solve each subproblem

Merge the solutions

Examples:
« Mergesort, Binary Search, Strassen’s Algorithm,



A Classical Example: Merge Sort

A

/

Split to n/2

N

sort
recursively
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Why Balanced Partitioning?

An alternative "divide & conquer" algorithm:
« Split into n-1 and 1

« Sort each sub problem

* Merge them

Runtime

TmM)=Tn—-1)+T(1)+n
Solution:
Tn)=n+Tn-1)+T(1)

=n+n—14+ T(n—2)
=n+n—1+n—-2+4+T(n-3)

=n+n—-1+n—-2+-+1=0"n%



D&C: The Key Idea

Suppose we've already invented Bubble-Sort, and we know
it takes n? _

Try just one level of divide & conquer:
Bubble-Sort(first n/2 elements)

Bubble-Sort(last n/2 elements)

Merge results
D&C in a
nutshell

Time: 2T(n/2) + n = n?/2 + n K n?
—~——

\"; Almost twice as fast!
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D&C approach

« “the more dividing and conquering, the better”

« Two levels of D&C would be almost 4 times faster, 3 levels
almost 8, etc., even though overhead is growing.

« Best is usually full recursion down to a small constant size
(balancing "work" vs "overhead").

In the limit: you've just rediscovered mergesort!
« Even unbalanced partitioning is good, but less good

 Bubble-sort improved with a 0.1/0.9 split;
(1n)? + (9n)? + n =(B2n? + n
The 18% savings compounds sigmificantly if you carry

recursion to more levels, actually giving O(nlogn), but
with a bigger constant.
* This is why Quicksort with random splitter is good — badly
unbalanced splits are rare, and not instantly fatal.
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Finding the Root of a Function

Given a continuous function f and two points a < b such that

if(a) < O} ib |
f(b) =0 a'\y /b

Find an approximate root of f (a point ¢ where f(c) = 0).

f has a root in [a, b] by f(x) = sin(x) —%’ + x4
iIntermediate value theorem |

Note that roots of f may be irrationall,
So, we want to approximate I
the root with an arbitrary precision!




A Naliive Approch

Suppose we want € approximation to a root.

Divide [a,b] inton = b—;a Intervals. For each interval check
f(x)<0,f(x+¢€) > O(U
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This runs in time 0(n) = O(b%a)

Can we do faster? AT




D&C Approach (Based on Binary Search)

Bisection(a,b, &)
if (b —a) < € then

return (a)
else

me« (a+b)/2
if f(m) < 0 then

eISrgturn(Bise(:tion(c:, b, €)) ////////%

-

return(Bisection(a, c, ¢))
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Time Analysis

Letn=a—_b
€

Andc=(a+b)/2
Always half of the intervals lie to
the left and half lie to the right of c

So,
T@)=T@)+0m)

.e., T(n) = 0(logn) = 0(log*=2)
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Correctness Proof

P(k) = “Forany a,b such that ke < |a — b| < (k + 1)e if
fla)f(b) < 0, then we find an € approx to a root using log k
queries to f”

Base Case: P(1): Output a + €
IH: Assume P(K).

IS: Show P(2k). Consider an arbitrary a, b s.t.,
2ke < |la—b| < 2k + 1)e
If f(a + ke) = 0 output a + ke.

If f(a)f(a+ ke) <0, solve for interval a, a + ke using log(k)
queries to f.

Otherwise, we must have f(b)f(a + ke) < 0 since f(a)f(b) <0
and f(a)f(a + ke) = 0. Solve for interval a + ke, b.

Overall we use at most log(k)+1=log(2k) queries to T.



