
CSE 421

Dijkstra’s Algorithm,
Divide and Conquer

Shayan Oveis Gharan

1

Boiling Water Example
Q: Given an empty bowl, how do you make boiling water?

A: Well, I fill it with water, turn on the stove, leave the bowl on
the stove for 20 minutes. I have my boiling water.

Q: Now, suppose you have a bowl of water, how do you make
boiling water?

A: First, I pour water away, now
I have an empty bowl and
I have already solved this!

2

Lesson: Never solve a problem twice!

3

Dijkstra’s Algorithm: Example

0

¥
¥

¥

¥

¥

¥

¥

¥

¥

¥
¥

¥

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

¥

¥

¥

¥

¥

¥

¥
¥

¥

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

¥

¥

¥

¥

¥

¥

¥
¥

¥

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

¥

9

¥

¥

¥

¥

¥
¥

¥

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

¥

9

¥

¥

¥

¥

¥
¥

¥

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

8

9

¥

¥

¥

¥

7
5

¥

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

8

9

¥

¥

¥

¥

7
5

¥

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

8

9

¥

¥

¥

¥

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

8

9

¥

¥

¥

¥

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

¥

8

9

¥

¥

¥

¥

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

¥

¥

¥

¥

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

¥

¥

¥

¥

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

15

¥

10

¥

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

15

¥

10

¥

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

15

14

10

20

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

15

14

10

20

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

15

14

10

19

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

15

14

10

19

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

15

14

10

18

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

0

2
4

16

8

9

15

14

10

18

7
5

13

4
25

10

1

8

4
3

4

3 1

5

8

2

5

6

7

9

s

Disjkstra’s Algorithm: Correctness
Prove by induction that throughout the algorithm, for any 𝑢 ∈ 𝑆,
the path 𝑃! in the shortest from s to u.
Base Case: This is always true when 𝑆 = 𝑠 .
IH: Suppose |𝑆| = 𝑘 and the claim holds for S

IS: Say 𝑣 is the k+1-st vertex that
we add to S. Let {u,v} be last edge on 𝑃" .
If 𝑃" is not the shortest path there
is a path 𝑃 to s which is shorter.
Consider the first time that P leaves S
(with edge {x,y}).
S -> x has weight (at least) d(x)
So, 𝑐 𝑃 ≥ 𝑑 𝑥 + 𝑐#,% ≥ 𝑑 𝑣 = 𝑐 𝑃" .
A contradiction.

v

y

u

s
x

𝑃!

𝑃

Remarks on Dijkstra’s Algorithm
• Algorithm also produces a tree of shortest paths to s following

Parent links
• Algorithm works on directed graph (with nonnegative weights)

• The algorithm fails with negative edge weights.
• e.g., some airline tickets

Why does it fail?

• Dijkstra’s algorithm is similar to BFS:
• Subtitute every edge with 𝑐! = 𝑘 with a path of length k, then run BFS.

Implementing Dijkstra’s Algorithm
Priority Queue: Elements each with an associated key Operations

• Insert
• Find-min

– Return the element with the smallest key

• Delete-min
– Return the element with the smallest key and delete it from the data structure

• Decrease-key
– Decrease the key value of some element

Implementations
Arrays:

• O(n) time find/delete-min,
• O(1) time insert/decrease key

Binary Heaps:
• O(log n) time insert/decrease-key/delete-min,
• O(1) time find-min

Dijkstra’s Algorithm
Runs in O((n+m)log n).

Dijkstra(G, c, s) {
foreach (v Î V) d[v] ¬ ¥ //This is the key of node v
𝒅 𝒔 ← 𝟎
foreach (v Î V) insert v onto a priority queue Q
Initialize set of explored nodes S ¬ {s}

while (Q is not empty) {
u ¬ delete min element from Q
S ¬ S È { u }
foreach (edge e = (u, v) incident to u)

if ((v Ï S) and (d[u]+ce < d[v]))
𝒅 𝒗 ← 𝒅 𝒖 + 𝒄𝒆
Decrease key of v to d[v].
𝑷𝒂𝒓𝒆𝒏𝒕 𝒗 ← 𝒖

}

𝑂(𝑚) of decrease key,
each runs in 𝑂(log 𝑛)

𝑂(𝑛) of delete min,
each in O(log n)

Summary (Greedy Algorithms)

• Greedy Stays Ahead: Interval Scheduling, Dijkstra’s
algorithm

• Structural: Interval Partitioning

• Exchange Arguments: MST, Kruskal’s Algorithm,

• Data Structures: Union Find, Heap

Divide and Conquer Approach

Divide and Conquer
Similar to algorithm design by induction, we reduce a

problem to several subproblems.
Typically, each sub-problem is

at most a constant fraction of
the size of the original problem

Recursively solve each subproblem
Merge the solutions

Examples:
• Mergesort, Binary Search, Strassen’s Algorithm,

Lo
g

n
le

ve
ls

n

n/2n/2

n/4

A Classical Example: Merge Sort

A

sort
recursivelySplit to n/2

merge

Why Balanced Partitioning?
An alternative "divide & conquer" algorithm:
• Split into n-1 and 1
• Sort each sub problem
• Merge them

Runtime
𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 1 + 𝑛

Solution:
𝑇 𝑛 = 𝑛 + 𝑇 𝑛 − 1 + 𝑇 1

= 𝑛 + 𝑛 − 1 + 𝑇 𝑛 − 2

= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑇 𝑛 − 3

= 𝑛 + 𝑛 − 1 + 𝑛 − 2 +⋯+ 1 = 𝑂(𝑛$)

D&C: The Key Idea
Suppose we've already invented Bubble-Sort, and we know
it takes 𝑛$

Try just one level of divide & conquer:

Bubble-Sort(first n/2 elements)

Bubble-Sort(last n/2 elements)

Merge results

Time: 2 𝑇(𝑛/2) + 𝑛 = 𝑛2/2 + 𝑛 ≪ 𝑛2

Almost twice as fast!

D&C in a
nutshell

D&C approach
• “the more dividing and conquering, the better”

• Two levels of D&C would be almost 4 times faster, 3 levels
almost 8, etc., even though overhead is growing.

• Best is usually full recursion down to a small constant size
(balancing "work" vs "overhead").

In the limit: you’ve just rediscovered mergesort!
• Even unbalanced partitioning is good, but less good

• Bubble-sort improved with a 0.1/0.9 split:
.1𝑛 5 + .9𝑛 5 + 𝑛 = .82𝑛2 + 𝑛

The 18% savings compounds significantly if you carry
recursion to more levels, actually giving 𝑂(𝑛 log 𝑛), but
with a bigger constant.

• This is why Quicksort with random splitter is good – badly
unbalanced splits are rare, and not instantly fatal.

Finding the Root of a Function

Finding the Root of a Function
Given a continuous function f and two points a < b such that

𝑓 𝑎 ≤ 0
𝑓 𝑏 ≥ 0

Find an approximate root of f (a point 𝑐 where 𝑓 𝑐 = 0).

f has a root in [𝑎, 𝑏] by
intermediate value theorem

Note that roots of f may be irrational,
So, we want to approximate
the root with an arbitrary precision!

a b

f 𝑥 = sin 𝑥 − #$$
%
+ 𝑥&

A Naiive Approch

Suppose we want 𝜖 approximation to a root.

Divide [a,b] into 𝑛 = %&'
(intervals. For each interval check

𝑓 𝑥 ≤ 0, 𝑓 𝑥 + 𝜖 ≥ 0

This runs in time 𝑂 𝑛 = 𝑂(%&'()

Can we do faster?

a b

D&C Approach (Based on Binary Search)
Bisection(a,b, e)

if 𝑏 − 𝑎 < 𝝐 then
return (a)

else
𝑚 ← (𝑎 + 𝑏)/2
if 𝑓 𝑚 ≤ 0 then

return(Bisection(c, b, e))
else

return(Bisection(a, c, e))

a bc

Time Analysis
Let 𝑛 = '&%

(
And 𝑐 = (𝑎 + 𝑏)/2
Always half of the intervals lie to
the left and half lie to the right of c

So,

𝑇 𝑛 = 𝑇)
$ + 𝑂(1)

i.e., 𝑇 𝑛 = 𝑂(log 𝑛) = 𝑂(log '&%() a bc
n/2n/2

Correctness Proof
P(k) = “For any 𝑎, 𝑏 such that 𝑘𝜖 ≤ 𝑎 − 𝑏 ≤ (𝑘 + 1)𝜖 if
𝑓 𝑎 𝑓 𝑏 < 0, then we find an 𝜖 approx to a root using log 𝑘
queries to 𝑓”

Base Case: P(1): Output 𝑎 + 𝜖
IH: Assume P(k).

IS: Show P(2k). Consider an arbitrary 𝑎, 𝑏 s.t.,
2𝑘𝜖 ≤ 𝑎 − 𝑏 < 2𝑘 + 1 𝜖

If 𝑓 𝑎 + 𝑘𝜖 = 0 output 𝑎 + 𝑘𝜖.
If 𝑓 a 𝑓 𝑎 + 𝑘𝜖 < 0, solve for interval 𝑎, 𝑎 + 𝑘𝜖 using log(k)
queries to f.
Otherwise, we must have 𝑓 𝑏 𝑓 𝑎 + 𝑘𝜖 < 0 since 𝑓 𝑎 𝑓 𝑏 < 0
and 𝑓 𝑎 𝑓 𝑎 + 𝑘𝜖 ≥ 0. Solve for interval 𝑎 + 𝑘𝜖, 𝑏.
Overall we use at most log(k)+1=log(2k) queries to f.

