An Advice on Problem Solving

If possible, try **not to** use arguments of the following type in proofs:

- The Best case is
- The worst case is
- The slowest running time for my algorithm is

These arguments need **rigorous** justification, and they are usually the main reason that your proofs can become wrong, or unjustified.
Minimum Spanning Tree (MST)

Given a connected graph $G = (V, E)$ with real-valued edge weights c_e, an MST is a subset of the edges $T \subseteq E$ such that T is a spanning tree whose sum of edge weights is minimized.

$G = (V, E)$

$c(T) = \sum_{e \in T} c_e = 50$
Cuts

In a graph $G = (V, E)$ a cut is a bipartition of V into sets $S, V - S$ for some $S \subseteq V$. We show it by $(S, V - S)$.

An edge $e = \{u, v\}$ is in the cut $(S, V - S)$ if exactly one of u, v is in S.

OBS: If G is connected \Rightarrow there is at least one edge in every cut.
Cycles and Cuts

Claim. A cycle crosses a cut (from S to V-S) an even number of times.

Pf. (by picture)
Properties of the OPT

Simplifying assumption: All edge costs c_e are distinct.

Cut property: Let S be any subset of nodes (called a cut), and let e be the min cost edge with exactly one endpoint in S. Then every MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost edge belonging to C. Then no MST contains f.

red edge is in the MST

Green edge is not in the MST
Cut Property: Proof

Simplifying assumption: All edge costs c_e are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the T^* contains e.

Pf. By contradiction

Suppose $e = \{u,v\}$ does not belong to T^*.

Adding e to T^* creates a cycle C in T^*. C crosses S even number of times \Rightarrow there exists another edge, say f, that leaves S.

$$T = T^* \cup \{e\} - \{f\}$$ is also a spanning tree.

Since $c_e < c_f$, $c(T) < c(T^*)$.

This is a contradiction.
Cycle Property: Proof

Simplifying assumption: All edge costs c_e are distinct.

Cycle property: Let C be any cycle in G, and let f be the max cost edge belonging to C. Then the MST T^* does not contain f.

Pf. (By contradiction)
Suppose f belongs to T^*.
Deleting f from T^* cuts T^* into two connected components. There exists another edge, say e, that is in the cycle and connects the components.

$$T = T^* \cup \{e\} - \{f\}$$ is also a spanning tree.
Since $c_e < c_f$, $c(T) < c(T^*)$.
This is a contradiction.
Kruskal's Algorithm [1956]

Kruskal(G, c) {
 Sort edges weights so that \(c_1 \leq c_2 \leq \ldots \leq c_m \).
 \(T \leftarrow \emptyset \)

 foreach \((u \in V)\) make a set containing singleton \{u\}

 for i = 1 to m
 Let \((u,v) = e_i\)
 if (u and v are in different sets) {
 \(T \leftarrow T \cup \{e_i\} \)
 merge the sets containing u and v
 }
 return T
}
Kruskal’s Algorithm: Pf of Correctness

Consider edges in ascending order of weight.

Case 1: If adding e to T creates a cycle, discard e according to cycle property.

Case 2: Otherwise, insert e = (u, v) into T according to cut property where S = set of nodes in u's connected component.
Implementation: Kruskal’s Algorithm

Implementation. Use the union-find data structure.

- Build set T of edges in the MST.
- Maintain a set for each connected component.
- $O(m \log n)$ for sorting and $O(m \log n)$ for union-find

```plaintext
Kruskal(G, c) {
    Sort edges weights so that $c_1 \leq c_2 \leq \ldots \leq c_m$.
    $T \leftarrow \emptyset$

    foreach $(u \in V)$ make a set containing singleton \{
    $u$\}

    for $i = 1$ to $m$
        Let $(u, v) = e_i$
        if (u and v are in different sets) \{\[
            T \leftarrow T \cup \{e_i\}
            merge the sets containing $u$ and $v$
        \} \text{ } O(m \log n)

    return \{ \[
        T \leftarrow \emptyset \text{ } O(1)
    \}
}
```