
CSE 421

Greedy Alg: Minimum Spanning Tree

Shayan Oveis Gharan

1

An Advice on Problem Solving

If possible, try not to use arguments of the following type in
proofs:

• The Best case is ….

• The worst case is ….

• The slowest running time for my algorithm is ….

These arguments need rigorous justification, and they are
usually the main reason that your proofs can become
wrong, or unjustified.

2

Minimum Spanning Tree (MST)

Given a connected graph 𝐺 = (𝑉, 𝐸) with real-valued edge
weights ce, an MST is a subset of the edges 𝑇 ⊆ 𝐸 such that
𝑇 is a spanning tree whose sum of edge weights is
minimized.

3

5

23

10
21

14

24

16

6

4

18
9

7

11
8

𝐺 = (𝑉, 𝐸)

5

6

4

9

7

11
8

𝑐 𝑇 =*
!∈#

𝑐! = 50

Cuts

In a graph 𝐺 = (𝑉, 𝐸) a cut is a bipartition of V into sets 𝑆, 𝑉 − 𝑆
for some 𝑆 ⊆ 𝑉. We show it by (𝑆, 𝑉 − 𝑆)

An edge 𝑒 = {𝑢, 𝑣} is in the cut (𝑆, 𝑉 − 𝑆) if exactly one of u,v is in
S.

4

S V-S

u
v

x

Cycles and Cuts
Claim. A cycle crosses a cut (from S to V-S) an even

number of times.

Pf. (by picture)

5

u

S

V - S

C

Properties of the OPT
Simplifying assumption: All edge costs ce are distinct.

Cut property: Let S be any subset of nodes (called a cut), and let
e be the min cost edge with exactly one endpoint in S. Then
every MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost
edge belonging to C. Then no MST contains f.

6

10

S

red edge is in the MST Green edge is not in the MST

5

7

2 3

5

4

7

Cut Property: Proof
Simplifying assumption: All edge costs ce are distinct.
Cut property. Let S be any subset of nodes, and let e be the min
cost edge with exactly one endpoint in S. Then the T* contains e.
Pf. By contradiction
Suppose e = {u,v} does not belong to T*.
Adding e to T* creates a cycle C in T*.
C crosses S even number of timesÞ there exists another edge,
say f, that leaves S.

𝑇 = 𝑇∗ È {𝑒} − {𝑓} is also a spanning tree.
Since ce < cf, c(𝑇) < c(𝑇∗).
This is a contradiction.

7

f

T*
e

S

u v

Cycle Property: Proof
Simplifying assumption: All edge costs ce are distinct.
Cycle property: Let C be any cycle in G, and let f be the max cost
edge belonging to C. Then the MST T* does not contain f.

Pf. (By contradiction)
Suppose f belongs to T*.
Deleting f from T* cuts T* into two connected components.
There exists another edge, say e, that is in the cycle and
connects the components.

𝑇 = 𝑇∗ È {𝑒} − {𝑓} is also a spanning tree.
Since ce < cf, c(𝑇) < c(𝑇∗).
This is a contradiction.

8

f

T*
e

S

Kruskal’s Algorithm [1956]

Kruskal(G, c) {
Sort edges weights so that c1 £ c2 £ ... £ cm.
𝑻 ← ∅

foreach (𝒖 ∈ 𝑽) make a set containing singleton {𝒖}

for i = 1 to m
Let (u,v) = ei
if (u and v are in different sets) {

𝑻 ← 𝑻È {𝒆𝒊}
merge the sets containing 𝒖 and 𝒗

}
return 𝑻

}

Kruskal’s Algorithm: Pf of Correctness
Consider edges in ascending order of weight.
Case 1: If adding e to T creates a cycle, discard e according to
cycle property.
Case 2: Otherwise, insert e = (u, v) into T according to cut
property where S = set of nodes in u's connected component.

Case 1

v

u

Case 2

e

e
S

Implementation: Kruskal’s Algorithm
Implementation. Use the union-find data structure.

• Build set 𝑇 of edges in the MST.
• Maintain a set for each connected component.
• O(m log n) for sorting and O(m log n) for union-find

Kruskal(G, c) {
Sort edges weights so that c1 £ c2 £ ... £ cm.
𝑻 ← ∅

foreach (𝒖 ∈ 𝑽) make a set containing singleton {𝒖}

for i = 1 to m
Let (u,v) = ei
if (u and v are in different sets) {

𝑻 ← 𝑻È {𝒆𝒊}
merge the sets containing 𝒖 and 𝒗

}
return 𝑻

}

