Len (Cut Property): For any cut (S, V-S), the minimum Cost edge e is (S, V-S) is in the MST T*. Pf: (By contradiction!) smaller tree. Contradiction! To- need to show The is tree. Correct Pf. Add e to T*: T=T*Vsez. Thes a cycle G and we must have effect C crosses (S, VS) even number of times. (one for e)=) Jelse g∈ C. s.t. g∈ (s, v-s). Now we claim T-g+e is a tree. B/C C(T+g+e) < C(T) contradiction with T+ MST. T*-gre connected BIC by removing an edge of a eycle you don't disconnect the graph

Technique: Swapping technique.

Lem(cycle prop): Let e be the longest edge of a cycle C. Then e is not in MST T*.

Pf: (By contradiction).

Suppose eET*. T=T*-e=> T is not so it is discometed a tree

=> J(S,V-S) that T has no edge.

So e is the only edge of T* in (S,V-S).

Chorses (SiV-S) even # times (one is e)

=) $\exists g \in C$ s.t. $g \in (S_i \cup S)$. $g \notin T^*$ (e is only edge of T^* in $(S_i \vee S)$.

Claim T^* _e+g is a tree. gives a contradiction $B_i \subset C$ $C(T^*$ _e+g) $< C(T^*)$ since C(g) < C(e).

Therefore has no cycle $B_i \subset T^*$ has no cycle and g is the only edge in $(S_i \vee S)$