CSE 421: Introduction to Algorithms

Greedy: Interval Scheduling / Partitioning
Shayan Oveis Gharan
Interval Scheduling
Interval Scheduling

- Job j starts at $s(j)$ and finishes at $f(j)$.
- Two jobs compatible if they don’t overlap.
- Goal: find maximum subset of mutually compatible jobs.
Greedy Strategy

Sort the jobs in **some** order. Go over the jobs and take as much as possible provided it is compatible with the jobs already taken.

Main question:

- What order?
- Does it give the Optimum answer?
- Why?
Possible Approaches for Inter Sched

Sort the jobs in some order. Go over the jobs and take as much as possible provided it is compatible with the jobs already taken.

[Earliest start time] Consider jobs in ascending order of start time s_j.

[Earliest finish time] Consider jobs in ascending order of finish time f_j.

[Shortest interval] Consider jobs in ascending order of interval length $f_j - s_j$.

[Fewest conflicts] For each job, count the number of conflicting jobs c_j. Schedule in ascending order of conflicts c_j.
Greedy Alg: Earliest Finish Time

Consider jobs in increasing order of finish time. Take each job provided it’s compatible with the ones already taken.

Sort jobs by finish times so that $f(1) \leq f(2) \leq \ldots \leq f(n)$.
$A \leftarrow \emptyset$

for $j = 1$ to n {
 if (job j compatible with A)
 $A \leftarrow A \cup \{j\}$
}

return A

Implementation. O(n log n).
• Remember job j^* that was added last to A.
• Job j is compatible with A if $s(j) \geq f(j^*)$.
Greedy Alg: Example
Correctness

Theorem: Greedy algorithm is optimal.

Pf: (technique: “Greedy stays ahead”)

Let i_1, i_2, \ldots, i_k be jobs picked by greedy, j_1, j_2, \ldots, j_m those in some optimal solution in order.

We show $f(i_r) \leq f(j_r)$ for all r, by induction on r.

Base Case: i_1 chosen to have min finish time, so $f(i_1) \leq f(j_1)$.

IH: $f(i_r) \leq f(j_r)$ for some r

IS: Since $f(i_r) \leq f(j_r) \leq s(j_{r+1})$, j_{r+1} is among the candidates considered by greedy when it picked i_{r+1}, & it picks min finish, so $f(i_{r+1}) \leq f(j_{r+1})$

Observe that we must have $k \geq m$, else j_{k+1} is among (nonempty) set of candidates for i_{k+1}
Interval Partitioning Technique: Structural
Interval Partitioning

Lecture j starts at $s(j)$ and finishes at $f(j)$.

Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.
Interval Partitioning

Note: graph coloring is very hard in general, but graphs corresponding to interval intersections are simpler.
A Better Schedule

This one uses only 3 classrooms
A Structural Lower-Bound on OPT

Def. The depth of a set of open intervals is the maximum number that contain any given time.
A Structural Lower-Bound on OPT

Def. The depth of a set of open intervals is the maximum number that contain any given time.

Key observation. Number of classrooms needed \(\geq \) depth.

Ex: Depth of schedule below = 3 \(\Rightarrow \) schedule below is optimal.

Q. Does there always exist a schedule equal to depth of intervals?
Greedy algorithm: Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

Sort intervals by starting time so that \(s_1 \leq s_2 \leq \ldots \leq s_n \).

\[d \leftarrow 0 \]

\[
\text{for } j = 1 \text{ to } n \{ \\
 \text{if (lect } j \text{ is compatible with some classroom } k, 1 \leq k \leq d) } \\
 \text{schedule lecture } j \text{ in classroom } k \\
 \text{else} \\
 \text{allocate a new classroom } d + 1 \\
 \text{schedule lecture } j \text{ in classroom } d + 1 \\
 d \leftarrow d + 1 \\
\}
\]

Implementation: Exercise!
Correctness

Observation: Greedy algorithm never schedules two incompatible lectures in the same classroom.

Theorem: Greedy algorithm is optimal.

Pf (exploit structural property).

Let $d =$ number of classrooms that the greedy algorithm allocates.

Classroom d is opened because we needed to schedule a job, say j, that is incompatible with all $d-1$ previously used classrooms.

Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than $s(j)$.

Thus, we have d lectures overlapping at time $s(j) + \epsilon$, i.e. $\text{depth} \geq d$

"OPT Observation" \Rightarrow all schedules use $\geq \text{depth}$ classrooms, so $d = \text{depth}$ and greedy is optimal \cdot
Minimum Spanning Tree Problem
Minimum Spanning Tree (MST)

Given a connected graph $G = (V, E)$ with real-valued edge weights c_e, an MST is a subset of the edges $T \subseteq E$ such that T is a spanning tree whose sum of edge weights is minimized.

$G = (V, E)$

T, $\sum_{e \in T} c_e = 50$
Applications

Network design:
• telephone, electrical, hydraulic, TV cable, computer, road

Approximation algorithms for NP-hard problems:
• traveling salesperson problem, Steiner tree

Indirect applications:
• Graph clustering
• max bottleneck paths
• LDPC codes for error correction
• image registration with Renyi entropy
• learning salient features for real-time face verification
• reducing data storage in sequencing amino acids in a protein
• model locality of particle interactions in turbulent fluid flows
• autoconfig protocol for Ethernet bridging to avoid cycles in a network
Properties of the OPT

Simplifying assumption: All edge costs c_e are distinct.

Cut property: Let S be any subset of nodes (called a cut), and let e be the \textit{min} cost edge with exactly one endpoint in S. Then every MST contains e.

Cycle property. Let C be any cycle, and let f be the \textit{max} cost edge belonging to C. Then no MST contains f.

\[
\begin{array}{c}
\text{red edge is in the MST} \\
\text{Green edge is not in the MST}
\end{array}
\]
Cycles and Cuts

Claim. A cycle crosses a cut (from S to V-S) an even number of times.

Pf. (by picture)
Cut Property: Proof

Simplifying assumption: All edge costs c_e are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the T^* contains e.

Pf. By contradiction

Suppose $e = \{u,v\}$ does not belong to T^*.

Adding e to T^* creates a cycle C in T^*.

There is a path from u to v in $T^* \Rightarrow$ there exists another edge, say f, that leaves S.

$$T = T^* \cup \{e\} - \{f\}$$

is also a spanning tree.

Since $c_e < c_f$, $\text{cost}(T) < \text{cost}(T^*)$.

This is a contradiction.
Cycle Property: Proof

Simplifying assumption: All edge costs c_e are distinct.

Cycle property: Let C be any cycle in G, and let f be the \text{max} cost edge belonging to C. Then the MST T^* does not contain f.

Pf. (By contradiction)

Suppose f belongs to T^*.

Deleting f from T^* cuts T^* into two connected components. There exists another edge, say e, that is in the cycle and connects the components.

\[T = T^* \cup \{e\} - \{f\} \] is also a spanning tree.

Since $c_e < c_f$, $\text{cost}(T) < \text{cost}(T^*)$.

This is a contradiction.