CSE 421: Introduction to Algorithms

Course Overview

Shayan Oveis Gharan
Administrativia Stuffs

Lectures: M/W/F 1:30-2:20
Zoom Id: https://zoom.us/j/166376509

Office hours: M/W 2:30-3:20, T 4:30-5:20
https://washington.zoom.us/j/5948822807

Discussion Board: Use Piazza
http://piazza.com/washington/spring2020/cse421

cs.washington.edu/421
Course textbook
Supplementary text
TAs

<table>
<thead>
<tr>
<th>Name</th>
<th>Days</th>
<th>Time</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anny Kong</td>
<td>Mon</td>
<td>11:30-12:20</td>
<td>7980928356</td>
</tr>
<tr>
<td>Andrey Ryabtsev</td>
<td>Mon</td>
<td>3:30-4:20</td>
<td>5690154666</td>
</tr>
<tr>
<td>Jason Shiyoji Waataja</td>
<td>Tue</td>
<td>10:00-10:50</td>
<td>4237094217</td>
</tr>
<tr>
<td>Liangyu Zhao</td>
<td>Tue</td>
<td>12:30-1:20</td>
<td></td>
</tr>
<tr>
<td>Ansh Nagda</td>
<td>Tue</td>
<td>1:30-2:20</td>
<td>3246340598</td>
</tr>
<tr>
<td>Joy He</td>
<td>Tue</td>
<td>3:30-4:20</td>
<td></td>
</tr>
<tr>
<td>Ivy Wang</td>
<td>Wed</td>
<td>9:30-10:30</td>
<td>2597803488</td>
</tr>
<tr>
<td>Siddharth Vaidyanathan</td>
<td>Wed</td>
<td>3:30-4:20</td>
<td>9225427905</td>
</tr>
<tr>
<td>Xihu Zhang</td>
<td>Wed</td>
<td>4:30-5:20</td>
<td>8563721386</td>
</tr>
<tr>
<td>Sally Dong</td>
<td>Thu</td>
<td>10:30-11:20</td>
<td>6744319699</td>
</tr>
<tr>
<td>Alex Fang</td>
<td>Thu</td>
<td>11:30-12:20</td>
<td></td>
</tr>
</tbody>
</table>
Grading

• Weekly HWs, First HW due April 9th

• Submit to Canvas

• Midterm (05/04/2020), Final (06/08/2020)

 • Exams are open book, open note, no internet access
 • Midterm 60 minutes, Final 120 minutes.
 • Send out problems 00:00 (PST). Allocate a contiguous 60 (or 120) interval, answer questions. Upload your answers by 23:59 (PST).

• HW 50%, Midterm 15-20%, Final 30-35%
Practicing with Zoom!

- Everyone is muted by default!
- Feel free to share your video

Questions: type your question in Chat

- Videos: Recorded and can be access in Canvas (zoom tab)
- Zoom Breakouts: Small groups to work on in-class exercises
An In-class Exercise (1)

Prove that for any \(n \geq 1 \), the set of integers \(\{1, \ldots, n\} \) has exactly \(2^n \) many subsets.

For example, \(\{1,2\} \) has 4 subsets: \(\emptyset, \{1\}, \{2\}, \{1,2\} \)
An In-class Exercise (2)

Prove that every amount of postage of 12 cents or more can be formed using just 4-cents and 5-cents stamps.

For example 12=4+4+4.