For Induction.
\(P(n) \): Set \(\{1, \ldots, n\} \) has exactly \(2^n \) subsets.

Goal: prove \(P(n) \) for all \(n \geq 1 \).

Base Case: \(P(1) \). Set \(\{1\} \) two subsets \(\emptyset, \{1\} \)

\(\text{IH:} \ P(n-1) \) holds.

\(\text{IS:} \ \text{Goal: prove } P(n) \).

\(\text{God:} \ \{1, \ldots, n\} \) has \(2^n \) subsets.

By \(\text{IH} \), \(\{1, \ldots, n-1\} \) has \(2^{n-1} \) many subsets.

Every subset \(S \) of \(\{1, \ldots, n\} \)

I can construct two subsets of \(\{1, \ldots, n\} \). \(S, S \cup \{n\} \).

\(\checkmark \) Observe that this way I construct every subset of \(\{1, \ldots, n\} \).

\(\rightarrow \) By \(\text{BC} \) any subset \(T \subseteq \{1, \ldots, n\} \), \(T = \{n\} \subseteq \{1, \ldots, n\} \)

\(\checkmark \) I construct every subset at most once.

\(\{1, \ldots, n\} \) has twice many subsets, i.e. \(2 \cdot 2^{n-1} = 2^n \) \(\square \)

Claim: You can change any amount of postage \(\geq 12 \) using 4-5 cents stamps.

\(P(n) \): \(n \) can be changed using 4-5 cents stamps.

Base Case: \(P(12), P(13), P(4) \) \(P(15) \)

\(4+4+4 \quad 5+4+4 \quad 5+5+4 \quad 5+6+4 \)

\(\text{IH:} \ P(k) \) holds for all \(1 \leq k \leq n-1 \), and \(n \geq 16 \)

\(\text{IS:} \ P(n) \).

pay a 4-cents stamp. we use \(\text{IH} \) to pay for \(P(n-4) \).