CSE421: Design and Analysis of Algorithms	May 5th, 2020
Homework 5	
Shayan Oveis Gharan	Due: May 14, 2029 at 23:59 PM

P1) A directed graph G is a tournament if for any pair of vertices u, v there is exactly one directed edge between u and v, either from u to v or from v to u. Given a tournament with 2^n vertices prove that it has a subtournament with at least n + 1 vertices which is acyclic.

For example, in the following picture the red vertices show an acyclic sub-tournament of the given tournament.

P2) We want to design an O(1) approximation algorithm for the following clustering problem. Given a set of n points $p_1, \ldots, p_n \in \mathbb{R}^d$, and an integer $1 \le k \le n$, find the minimum radius Δ and a set of balls of radius Δ centered at k of the given points such that all of the n points lie in these balls. Note that the balls have radius Δ with respect to the Euclidean distance.

a) (15 points) Assume that we know the optimum radius Δ . Design a polynomial time algorithm that finds at most k balls of radius $O(\Delta \text{ centered at } k \text{ of the points covering all of the given points.}$

Hint. Recall the triangle inequality: For any triple points $a, b, c \in \mathbb{R}^d$, $||a - c||_2 \leq ||a - b||_2 + ||b - c||_2$.

- b) (5 points) Now, assume that we do not know Δ . Instead suppose we know that the optimum Δ is in the interval $[1, R]^1$. Use part (a) to design an algorithm that runs in time polynomial in n, log R to find the k balls of radius $O(\Delta)$.
- P3) Recall that maximum independent set is NP-complete. Suppose a friend of yours is came up with an efficient algorithm to solve this problem. Unfortunately, their code does not output the independent set. Instead, for any graph G and any integer k, if G has an independent set of size k it will output "yes" and "no" otherwise. Now, given a graph G with n vertices and an integer $1 \le k \le n$, design a polynomial time algorithm (that only runs their code

¹In practice you can take 1, R correspond to be the minimum/maximum pairwise of all of the given points

polynomially many times) and outputs an independent set of size k in G if it exists, and outputs "Impossible" otherwise.

- P4) Draw the dynamic programming table of the following instance of the knapsack problem: You are given 6 items with weight 1, 2, 4, 6, 7, 9 and value 1, 3, 6, 12, 18, 25 respectively and the size of your knapsack is 13.
- P5) **Extra Credit:** Design an $O(\log n)$ approximation algorithm for weighted set cover problem, i.e., given m sets $S_1, \ldots, S_m \subseteq \{1, \ldots, n\}$ such that S_i has cost $c_i \ge 0$, choose a minimum cost family of these sets that cover all of the ground elements $\{1, \ldots, n\}$.