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It is not necessary to design the steps required to solve the problem
from scratch; it is sufficient to guarantee that (1) it is possible to solve a
small instance of the problem (the base case), and (2) a solution to every
problem can be constructed from solutions of smaller problems (the

inductive step).

With this principle in mind, we should concentrate on reducing the problem to a smaller
problem (or to a set of smaller problems). The trouble is that it is usually not easy to find
a way to reduce the problem. In this chapter, we present several techniques to facilitate
this process. The examples in this chapter were chosen not because of their importance
(some of them have limited applicability), but because they are simple and yet they
illustrate the principles we want to emphasize. We will present numerous other examples
of this approach throughout the book.

5.2 Evaluating Polynomials

We start with a simple algebraic problem — evaluating a given polynomial at a given
point.

The Problem Given a sequence of real numbers a,, a,_,, ...,a,,ay,
and a real number x, compute the value of the polynomial P,(x) = a,x"
+a,_ x" '+ - vax+a,.

This problem may not seem to be a natural candidate for an inductive approach.
Nevertheless, we will show that induction can lead directly to a very good solution to the
problem. We start with the most simple (almost trivial) approach, then find variations of
it that lead to better solutions.

The problem involves n+2 numbers. The inductive approach is to solve this
problem in terms of a solution to a smaller problem. In other words, we try to reduce the
problem to one with smaller size, which we then solve recursively, or, as we call it, by
induction. The first natural attempt is to reduce the problem by removing a,. We are left
with the problem of evaluating the polynomial

Pioi)=a, 1 x" " +a,,x" 2+ -+ +a,x+aq.

This is the same problem, except that it has one less parameter. Therefore, we can solve
it by induction.

Induction hypothesis: We know how to evaluate a polynomial represented
by the input a,_,, ..., a,, Ay, at the point x (i.e., we know how to compute
Pn—] (x))'

We can now use the hypothesis to solve the problem by induction. First, we have to
solve the base case, which is computing a; this is trivial. Then, we must show how to
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solve the original problem (computing P, (x)) with the aid of the solution to the smaller
problem (which is the value of P,_;(x)). This step is straightforward in this case; simply
compute x", multiply it by a,, and add the result to P,,_; (x):

P,(x)=P,_1(x)+a,x".

At this point it may seem that the use of induction in this problem is frivolous — it
just complicates a very simple solution. The algorithm implied by the preceding
discussion is merely evaluating the polynomial from right to left as it is written. In a
moment, however, we will see the power of our approach.

Although the algorithm is correct, it is not efficient. It requires
n+n—1+n-2+ -+ +1=n(n+1)/2 multiplications and »n additions. We now use
induction a little differently to obtain a better solution.

We make the first improvement by observing that there is a great deal of redundant
computation: The powers of x are computed from scratch. We can save many
multiplications by using the value of x"~' when we compute x". We make this change
by including the computation of x* in the induction hypothesis.

Stronger induction hypothesis: We know how to compute the value of the
polynomial P, _,(x), and we know how to compute x"~".

This induction hypothesis is stronger, since it requires computing x"~', but it is easier to
extend (since it is now easier to compute x"). We need to perform only one
multiplication to compute x”, then one more multiplication to get a,, x", then one addition
to complete the computation. (The induction hypothesis is not too strong, since we need
to compute x"~' anyway.) Overall, there are 2n multiplications and n additions. It is
interesting to note that, even though the induction hypothesis requires more computation,
it leads to less work overall. We will return to this point later. This algorithm looks good
by all measures. It is efficient, simple, and easy to implement. However, a better
algorithm exists. We discover it by using induction in yet another different way.

Reducing the problem by removing the last coefficient, a,, is the straightforward
step, but it is not the only possible reduction. We can also remove the first coefficient,
dy. The smaller problem becomes the evaluation of the polynomial represented by the
coefficients a,,, a,_,, ..., a|, which is

2

P’n—l(x) =anx"_l +an—lx"_ +oo +al.

(Notice that a, is now the (n — 1)th coefficient, a,_; is the (n—2)th coefficient, and so
on.) So we have a new induction hypothesis.

Induction hypothesis (reversed order): We know how to evaluate the
polynomial represented by the coefficients a,,a,_,,....a, at the point x (i.e.,
we know how to compute P’,,_;(x)).

This hypothesis is more suited to our purposes, because it is easier to extend. Clearly,
P,(x)=xP’,_,(x)+a,. Therefore, only one multiplication and one addition are
required to compute P,(x) from P’,_;(x). The complete algorithm can be described by
the following expression:
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ax"+a,x" M+ taxt+ag = (( (@x A, )X +a,) )X +a)x +ag,
n

This algorithm is known as Horner’s rule after the English mathematician W.G. Horner.
(It was also mentioned by Newton, see [Knuth 1981], page 467.) The program to
evaluate the polynomial is given in Fig. 5.1.

Algorithm Polynomial_Evaluation (a, x) ;

Input: a=ag,a,, a,, ..., a, (coefficients of a polynomial), and x (a real
number).

Output: P (the value of the polynomial at x).

begin
P :=a,;
Jori:=1tondo
P:=x*P+a,_;
end

Figure 5.1 Algorithm Polynomial_Evaluation.

Complexity The algorithm requires only n multiplications, » additions, and one extra
memory location. Even though the previous solutions seemed very simple and very
efficient, we have found it worthwhile to pursue a better algorithm. Not only is this
algorithm faster than those described previously, but also its corresponding program is
simpler.

Comments Induction allows us to concentrate on extending solutions of smaller
subproblems to those of larger problems. Suppose that we want to solve P (n), which is a
problem P that depends on a parameter n (usually its size). We start with an arbitrary
instance of P (n), and try to solve it by using the assumption that P (n — 1) has already
been solved. There are many possible ways to define the induction hypothesis and many
possible ways to use it. We will survey several of these methods, and will show their
power in designing algorithms.

This simple example illustrates the flexibility we have when we use induction. The
trick that led to Horner’s rule was merely considering the input from left to right, instead
of the intuitive right to left. Another common possibility is comparing top down versus
bottom up (when a tree structure is involved). It is also possible to go in increments of 2
(or more) rather than 1, and there are numerous other possibilities. Moreover, sometimes
the best induction sequence is not the same for all inputs. It may be worthwhile to design
an algorithm just to find the best way to perform the reduction. We will see examples of
all these possibilities.
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5.3 Maximal Induced Subgraph

Consider the following problem. You are arranging a conference of scientists from
different disciplines and you have a list of people you want to invite. You assume that
everyone on the list will agree to come under the condition that there will be ample
opportunity to exchange ideas. For each scientist, you write down the names of all other
scientists on the list with whom interaction is likely. You would like to invite as many
people on the list as possible, but you want to guarantee that each one will have at least k
other people with whom to interact (k is a fixed number, independent of the number of
invitees). You do not have to arrange the interactions; in particular, you do not have to
make sure that there is enough time for them to occur. You just want to lure everyone to
the conference. How do you decide whom to invite? This problem corresponds to the
following graph-theoretic problem. Let G =(V, E) be an undirected graph. An induced
subgraph of G is a graph H=(U, F) such that UC V and F includes all edges in E both of
whose incident vertices are in U. A degree of a vertex is the number of vertices adjacent
to that vertex. The vertices of the graph correspond to the scientists, and two vertices are
connected if there is a potential for the two corresponding scientists to exchange ideas.
An induced subgraph corresponds to a subset of the scientists.

The Problem Given an undirected graph G =(V, E) and an integer
k, find an induced subgraph H=(U, F) of G of maximum size such that
all vertices of H have degree 2 k (in H), or conclude that no such in-
duced subgraph exists.

A direct approach to solving this problem is to remove vertices whose degree is <k. As
vertices are removed with their adjacent edges, the degrees of other vertices may be
reduced. When the degree of a vertex becomes less than k, that vertex should be
removed. The order of removals, however, is not clear. Should we remove all the
vertices of degree <k first, then deal with vertices whose degrees were reduced? Should
we remove first one vertex of degree <k, then continue with affected vertices? (These
two approaches correspond to breadth-first search versus depth-first search, which are
discussed in detail in Section 7.3.) Will both approaches lead to the same result? Will
the resulting graph be of maximum size? All these questions are easy to answer; the
approach we will describe makes answering them even easier.

Instead of thinking about our algorithm as a sequence of steps that a computer has
to take to calculate a result, think of proving a theorem that the algorithm exists. We do
not suggest attempting a formal proof (at least not at this first stage). The idea is to
imitate the steps we take in proving a theorem, in order to gain insight into the problem.
We need to find the maximum induced subgraph that satisfies the given conditions. Here
is a **proof”’ by induction.
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Induction hypothesis: We know how to find maximum induced subgraphs
all of whose vertices have degrees 2 k, provided that the number of vertices
is<n.

We need to prove that this ‘‘theorem’’ is true for a base case, and that its truth for n—1
implies its truth for n. The first nontrivial base case occurs when n =k + 1, because if
n <k, then all the degrees are less than k. If n=k +1, then the only way to have all the
degrees equal to k is to have a complete graph (namely, all vertices are connected),
which we can detect. So, assume now that G =(V, E) is a graph with n > k +1 vertices.
If all the vertices have degrees >k, then the whole graph satisfies the conditions and we
are done. Otherwise, there exists a vertex v with degree <. It is obvious that the degree
of v remains < k in any induced subgraph of G; hence, v does not belong to any subgraph
that satisfies the conditions of the problem. Therefore, we can remove v and its adjacent
edges without affecting the conditions of the theorem. After v is removed, the graph has
n—1 vertices — and, by the induction hypothesis, we know how to solve the problem.

We are now done. The algorithm and the answers to the questions we raised
earlier are now clear. Any vertex of degree < k can be removed. The order of removals
is immaterial. The graph remaining after all these removals must be of maximum size
because these removals are mandatory. It is also clear that the algorithm is correct,
because we designed it by proving its correctness!

Comments The best way to reduce a problem is to eliminate some of its elements.
In this example, the application of induction was straightforward, mainly because it was
clear which vertices we should eliminate and how we should eliminate them. The
reduction follows immediately. In general, however, the elimination process may not be
straightforward. We will see examples of combining two elements into one, causing the
number of elements to be reduced (Section 6.6); of eliminating restrictions on the
problem rather than eliminating parts of the input (Section 7.7); and of designing a
special algorithm to find which elements can be eliminated (Section 5.5). Another
example of eliminating the right elements is presented next. It is interesting to note that,
if we replace ‘‘>’" with ‘‘<’’ in the statement of the problem (that is, if we look for a
maximal induced subgraph all of whose degrees are ar most k), the problem becomes
much more difficult (see Exercise 11.12).

5.4 Finding One-to-One Mappings

Let f be a function that maps a finite set A into itself (i.., every element of A is mapped
to another element of A). For simplicity, we denote the elements of A by the integers 1 to
n. We assume that the function f is represented by an array f [1..n] such that f [i] holds
the value of f (/) (which is an integer between 1 and n). We call f a one-to-one function
if, for every element j, there is at most one element i that is mapped to j. The function f
can be represented by a diagram, as shown in Fig. 5.2, where both sides correspond to the
same set and the edges indicate the mapping. The function in Fig. 5.2 is clearly not a
one-to-one function.
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Figure 5.2 A mapping from a set into itself (both sides represent the same set).

The Problem Given a finite set A and a mapping f from A to itself,
find a subset SC A with the maximum number of elements, such that (1)
the function f maps every element of S to another element of S (i.e., f
maps S into itself), and (2) no two elements of S are mapped to the same
element (i.e., f is one-to-one when restricted to S).

If fis originally one-to-one, then the whole set A satisfies the conditions of the problem,
and A is definitely maximal. If, on the other hand, f (i)=f (j) for some i#j, then S
cannot contain both i and j. For example, the set S that solves the problem given in Fig.
5.2 cannot contain both 2 and 3 since f (2)=f (3)=1. The choice of which one of them
to eliminate cannot be arbitrary. Suppose, for example, that we decide to eliminate 3.
Since 1 is mapped to 3, we must eliminate 1 as well (the mapping must be into S and 3 is
no longer in S). But if 1 is eliminated, then 2 must be eliminated as well (for the same
reason). But, this subset is not maximal, since it is easy to see that we could have
eliminated 2 alone. (The solution for Fig. 5.2 is the subset {1,3,5}.) The problem is to
find a general method to decide which elements to include.

Fortunately, we have some flexibility in deciding how to reduce the problem to a
smaller one. We can reduce the size of the problem by finding either an element that
belongs to S or an element that does not belong to S. We will do the latter. We use the
straightforward induction hypothesis.

Induction hypothesis: We know how to solve the problem for sets of n —1
elements.

The base case is trivial: If there is only one element in the set, then it must be mapped to
itself, which is a one-to-one mapping. Assume now that we have a set A of n elements
and we are looking for a subset S that satisfies the conditions of the problem. We claim
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that any element i that has no other element mapped to it cannot belong to S. (In other
words, an element 7 in the right side of the diagram, which is not connected to any edge,
cannot be in S.) Otherwise, if i € S and S has, say, k elements, then those k elements are
mapped into at most k —1 elements; therefore, the mapping cannot be one-to-one. If there
is such an i, then we simply remove it from the set. We now have a set A"=A-{i} with
n —1 elements, which f maps into itself; by the induction hypothesis, we know how to
solve the problem for A”. If no such i exists, then the mapping is one-to-one, and we are
done.

The essence of this solution is that we must remove i. We proved that i cannot
belong to S. This is the strength of induction: Once we remove an element and reduce
the size of the problem, we are done. We have to be careful, however, that the reduced
problem is exactly the same (except for size) as the original problem. The only condition
on the set A and the function f was that f maps A into itself. This condition is still
maintained for the set A-{i}, since there was nothing that was mapped to i. The
algorithm terminates when no more elements can be removed.

Implementation We described the algorithm as a recursive procedure. In each
step, we found an element such that no other element is mapped to it, removed it, and
continued recursively. The implementation, however, need not be recursive. We can
maintain a counter ¢ [i ] with each element i. Initially, ¢ [i ] should be equal to the number
of elements that are mapped to i. We can compute ¢ [i ], for all , in n steps by scanning
the array and incrementing the appropriate counters. We then put all the elements that
have a zero counter in a queue. In each step, we remove an element j from the queue
(and the set), decrement ¢ [f (j)], and, if ¢ [f(j)]=0, we put f(j) in the queue. The
algorithm terminates when the queue is empty. The algorithm is given in Fig. 5.3.

Complexity The initialization part requires O (n) operations. Every element can be
put on the queue at most once, and the steps involved in removing an element from the
queue take constant time. The total number of steps is thus O (n).

Comments In this example, we reduced the size of the problem by eliminating
elements from a set. Therefore, we tried to find the easiest way to remove an element
without changing the conditions of the problem. Because the only requirement we made
was that the function maps A into itself, the choice of an element to which no other
element is mapped is natural.

5.5 The Celebrity Problem

The next example is a popular exercise in algorithm design. It is a nice example of a
problem that has a solution that does not require scanning all the data (or even a
significant part of them). Among n persons, a celebrity is defined as someone who is
known by everyone but does not know anyone. The problem is to identify the celebrity,
if one exists, by asking questions only of the form, ‘*Excuse me, do you know the person
over there?’’ (The assumption is that all the answers are correct, and that even the
celebrity will answer.) The goal is t0 minimize the number of questions. Since there are
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Algorithm Mapping (f, n) ;
Input: f(an array of integers whose values are between 1 and n).
Output: S (a subset of the integers from 1 to n, such that fis one-to-one on S).

begin
S :=A; { A is the set of numbers from 1 to n }
forj:=1tondo c[j]:=0;
for j:=1tondo increment c[f [j]];
forj:=1tondo
if c[j] =0 then put j in Queue;
while Queue is not empty do
remove i from the top of the queue;
S:=5-{i};
decrement ¢ [f [i]];
ifc[f[i]]1=0 then put f [i] in Queue
end

Figure 5.3 Algorithm Mapping.

n(n-1)/2 pairs of persons, there is potentially a need to ask n(n—1) questions, in the
worst case, if the questions are asked arbitrarily. It is not clear that we can do better in
the worst case.

We can use a graph-theoretical formulation. We can build a directed graph with
the vertices corresponding to the persons and an edge from person A to person B if A
knows B. A celebrity corresponds to a sink of the graph (no pun intended). A sink is a
vertex with indegree n—1 and outdegree 0. Notice that a graph can have at most one
sink. The input to the problem corresponds to an n X n adjacency matrix (whose ij entry
is 1 if the ith person knows the jth person, and 0 otherwise).

The Problem Given an n xn adjacency matrix, determine whether
there exists an i such that all the entries in the ith column (except for the
iith entry) are 1, and all the entries in the ith row (except for the iith en-
try) are 0.

The base case of two persons is simple. Consider as usual the difference between the
problem with n—1 persons and that with n persons. We assume that we can find the
celebrity among the first n — 1 persons by induction. Since there is at most one celebrity,
there are three possibilities: (1) the celebrity is among the first n— 1, (2) the celebrity is
the nth person, and (3) there is no celebrity. The first case is the easiest to handle. We
need only to check that the nth person knows the celebrity, and that the celebrity does not
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know the nth person. The other two cases are more difficult because, to determine
whether the nth person is the celebrity, we may need to ask 2(n — 1) questions. If we ask
2(n — 1) questions in the nth step, then the total number of questions will be n(n—1)
(which is what we tried to avoid). We need another approach.

The trick here is to consider the problem *‘backward.’’ It may be hard to identify a
celebrity, but it is probably easier to identify someone as a noncelebrity. After all, there
are definitely more noncelebrities than celebrities. If we eliminate someone from
consideration, then we reduce the size of the problem from n to n — 1. Moreover, we do
not need to eliminate someone specific; anyone will do. Suppose that we ask Alice
whether she knows Bob. If she does, then she cannot be a celebrity; if she does not, then
Bob cannot be a celebrity. We can eliminate one of them with one question.

We now consider again the three cases with which we started. We do not just take
an arbitrary person as the nth person. We use the idea in the last paragraph to eliminate
either Alice or Bob, then solve the problem for the other n—1 persons. We are
guaranteed that case 2 will not occur, since the person eliminated cannot be the celebrity.
Furthermore, if case 3 occurs — namely, there is no celebrity among the n — 1 persons —
then there is no celebrity among the n persons. Only case 1 remains, but this case is easy.
If there is a celebrity among the n — 1 persons, it takes two more questions to verify that
this is a celebrity for the whole set. Otherwise, there is no celebrity.

The algorithm proceeds as follows. We ask A whether she knows B, and eliminate
either A or B according to the answer. Let’s assume that we eliminate A. We then find
(by induction) a celebrity among the remaining n — 1 persons. If there is no celebrity, the
algorithm terminates; otherwise, we check that A knows the celebrity and that the
celebrity does not know A.

Implementation As was the case with the algorithm in the previous section, it is
more efficient to implement the celebrity algorithm iteratively, rather than recursively.
The algorithm is divided into two phases. In the first phase, we eliminate all but one
candidate, and in the second phase we check whether this candidate is indeed the
celebrity. We start with n candidates, and, for the purpose of this discussion, let’s
assume that they are stored in a stack. For each pair of candidates, we can eliminate one
candidate by asking one question — whether one of them knows the other. We start by
taking the first two candidates from the stack, and eliminating one of them. Then, in each
step, we have one remaining candidate, and, as long as the stack is nonempty, we take
one additional candidate from the stack, and eliminate one of these two candidates.
When the stack becomes empty, one candidate remains. We then check that this
candidate is indeed the celebrity. The algorithm is presented in Fig. 5.4 (notice that the
stack is implemented explicitly by the use of the indices i, j, and next).

Complexity At most 3(n - 1) questions will be asked: n—1 questions in the first
phase to eliminate n— 1 persons, and then at most 2(n — 1) questions to verify that the
candidate is indeed a celebrity. Notice that the size of the input is not n, but rather
n(n—1) (the number of entries of the matrix). This solution shows that it is possible to
identify a celebrity by looking at only O (n) entries in the adjacency matrix, even though
a priori the solution may be sensitive to each of the n (n — 1) entries.
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Algorithm Celebrity (Know) ;
Input: Know (an nx n Boolean matrix ).
Output: celebrity.

begin
i:=1;
j = 2 ,.
next := 3 ;

{ in the first phase we eliminate all but one candidate }
while next <n+1do
if Knowl[i, j] then i := next
else j := next ;
next := next + 1 ;
{ one of either i or j is eliminated }
ifi=n+1then
candidate := j
else
candidate :=i ;
{ Now we check that the candidate is indeed the celebrity }
wrong := false ;
k:=1;
Know[candidate, candidate] := false ;
{ a dummy variable to pass the test }
while not wrong and k <n do
if Know[candidate, k] then wrong := true ;
if not Know[k, candidate] then
if candidate + k then wrong := true ;
k:=k+1;
if not wrong then celebrity := candidate
else celebrity := 0 { no celebrity }
end

Figure 5.4 Algorithm Celebrity.

Comments The key idea in this elegant solution is to reduce the size of the problem
from n to n—1 in a clever way. This example shows that it sometimes pays to expend
some effort (in this case — one question) to perform the reduction more effectively. Do
not start by simply considering an arbitrary input of size n — 1 and attempting to extend
it. Select a particular input of size n—1. We will see more examples where we spend
substantial time just constructing the right order of induction — and that time is well
Spent.
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5.6 A Divide-and-Conquer Algorithm: The Skyline
Problem

So far, we have seen examples from graph theory and numerical computation. This
example deals with a problem of drawing shapes.

The Problem Given the exact locations and shapes of several rec-
tangular buildings in a city, draw the skyline (in two dimensions) of
these buildings, eliminating hidden lines.

An example of an input is given in Fig. 5.5(a); the corresponding output is given in Fig.
5.5(b). We are interested in only two-dimensional pictures. We assume that the bottoms
of all the buildings lie on a fixed line (i.e., they share a common horizon). Building B; is
represented by a triple (L;, H;, R;). L; and R; denote the left and right x coordinates of the
building, respectively, and H; denotes the building’s height. A skyline is a list of x
coordinates and the heights connecting them arranged in order from left to right. For
example, the buildings in Fig. 5.5(a) correspond to the following input:

(1,11,5), (2,6,7), (3,13,9), (12,7,16), (14,3,25), (19,18,22), (23,13,29), and
(24,4,28).

(The numbers in boldface type are the heights.) The skyline in Fig. 5.5(b) is represented
as follows:

(1,11,3,13,9,0,12,7,16,3,19,18,22,3,23,13,29,0).

(Again, the numbers in boldface type are heights.)

The straightforward algorithm for this problem is based on adding one building at a
time to the skyline. The induction hypothesis is the simple one. We assume that we
know how to solve the problem for n —1 buildings, and then we add the nth building.

-

V) 10 15 20 25 30 1 5 10 1s 20 25 30

(a) (b)
Figure 5.5 The skyline problem: (a) The input. (b) The skyline.
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The problem is trivial for one building. To add a building B, to the skyline, we need to
intersect it with the existing skyline (see Fig. 5.6). Let B, be (5,9,26). We first scan the
skyline from left to right to find where the left side of B, fits (i.e., we search for the
appropriate x coordinate — 5 in this example). In this case, the horizontal line that
‘‘covers’” 5 is the one from 3 to 9, and its height is 13. We can now scan the skyline,
looking at one horizontal line after another, and adjusting whenever the height of B, is
higher than the existing height. We stop when we reach an x coordinate that is greater
than the right side of B,.. For this example, we do not adjust the height from 3 to 9, but
we do adjust it all the way from 9 to 19, then adjust it once more from 22 to 23. The new
skyline is represented by

(1,11,3,13,9,9,19,18,22,9,23,13,29,0).

This algorithm is clearly correct, but it is not necessarily efficient. In the worst case, the
scan for B, requires O(n) steps. Hence, the total number of steps will be
O(m)+0(n-1+ - +0(1)=0(n?).

To improve the performance of this algorithm, we use a well-known technique
called divide and conquer. Instead of using the simple induction principle of extending
the solution for n —1 to a solution for n, we extend a solution for n/2 to a solution for n.
(Again, the base case of one building is trivial.) Divide-and-conquer algorithms divide
the inputs into smaller subsets, solve (conquer) each subset recursively, and merge the
solutions together. Generally, it is more efficient to divide the problem into subproblems
of about equal size. As we saw in Chapter 3, the solution of the recurrence relation
T(n)=T(n-1)+0(n) is T(n)=0(n?), whereas that of T(n)=2T(n/2)+0(n) is
T(n)=0 (nlogn). Therefore, if we divide the problem into two equal-sized
subproblems, then combine the solutions in linear time, the algorithm runs in time
O (nlogn). The divide-and-conquer technique is very useful, and we will see many
examples of it.

1 5 10 15 20 25 30

Figure 5.6 Addition of a building (dotted line) to the skyline of Figure 5.5(b) (solid lines).
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The key idea behind the divide-and-conquer algorithm in this example is the
observation that, in the worst case, it takes linear time to merge one building with the
skyline, and also linear time to merge two different skylines. In about the same time, we
achieve more using the latter approach. Two skylines can be merged with basically the
same algorithm that merges one building into a skyline (Fig. 5.7). We scan the two
skylines together from left to right, match x coordinates, and adjust heights when
necessary. The merge can be achieved in linear time, and therefore the complete
algorithm runs in time O(nlogn) in the worst case. This algorithm is similar to
mergesort, which is discussed in detail in Section 6.4.3. Therefore, we do not give the
precise algorithm for the skyline algorithm here.

Comments Always try to get more for your money. There is nothing mysterious or
technical about this principle. If the algorithm includes a step that is more general than
required, consider applying this step to a more complicated part of the problem. The
reason the divide-and-conquer approach is so useful is that it uses the combine step to its
fullest. The recurrence relations given in Section 3.5.2 cover the most common divide-
and-conquer algorithms. You should memorize these recurrence relations.

5.7 Computing Balance Factors in Binary Trees

Let T be a binary tree with root r. The height of a node v is the distance between v and
the farthest leaf down the tree. The balance factor of a node v is defined as the
difference between the height of the node’s left subtree and the height of the node’s right
subtree (we assume that the children of a node are labeled by left or right). In Chapter 4,
we discussed AVL trees, in which all nodes have balance factors of —1, 0, or 1. In this
section, we consider arbitrary binary trees. Figure 5.8 shows a tree in which each node is
labeled with numbers representing h/b, where h is the node’s height and b is its balance
factor.

i 5 10 15 20 25 30

Figure 5.7 Merging two skylines.
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3/0
2/0 2/-2

1/1 1/-1 1/1

Figure 5.8 A binary tree. The numbers represent h/b, where 4 is the height and b is the
balance factor.

The Problem Given a binary tree T with n nodes, compute the bal-
ance factors of all the nodes.

We use the regular inductive approach with the straightforward induction hypothesis.

Induction hypothesis: We know how to compute balance factors of all
nodes in trees that have < n nodes.

The base case of n =1 is trivial. Given a tree with n > 1 nodes, we remove the root, then
solve the problem (by induction) for the two subtrees that remain. We chose to remove
the root because the balance factor of a node depends on only the nodes below that node.
We now know the balance factors of all the nodes, except for the root. The root’s
balance factor, however, depends not on the balance factors of the root’s children, but
rather on their height. Hence, simple induction does not work in this case. We need to
know the heights of the children of the root. The idea is to include the height-finding
problem within the original problem:

Stronger induction hypothesis: We know how to compute balance factors
and heights of all nodes in trees that have < n nodes.

Again, the base case is trivial. Now, when we consider the root, we can determine its
balance factor easily by calculating the difference between the heights of its children.
Furthermore, we can also determine the height of the root — it is the maximal height of
the two children plus 1.

The key to the algorithm is that it solves a slightly extended problem. Instead of
computing only balance factors, we also compute heights. The extended problem turns
out to be an easier one to solve, because the heights are easy to compute. In many cases,
solving a stronger problem is easier. With induction, we need only to extend a solution
of a small problem to a solution of a larger problem. If the solution is broader (because
the problem is extended), then the induction step may be easier, since we have more with
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which to work. It is a common error to forget that there are two different parameters in
this problem, and that each one should be computed separately. We will present several
examples of such errors later in the book.

5.8 Finding the Maximum Consecutive Subsequence

The following problem is from Bentley [1986] (it also appeared in Bates and Constable
[1985)).

The Problem Given a sequence x|, x5, ..., x, of real numbers (not
necessarily positive) find a subsequence x;, X;,, ..., x; (of consecutive
elements) such that the sum of the numbers in it is maximum over all
subsequences of consecutive elements.

We call such a subsequence a maximum subsequence. For example, in the sequence (2,
-3, 1.5, -1, 3, -2, -3, 3), the maximum subsequence is (1.5, —1, 3); its sum is 3.5. There
may be several maximum subsequences in a given sequence. If all the numbers are
negative, then the maximum subsequence is empty (by definition, the sum of the empty
subsequence is 0). We would like to have an algorithm that solves the problem and reads
the sequence in order only once.

The straightforward induction hypothesis is as follows:

Induction hypothesis: We know how to find the maximum subsequence in
sequences of size <n.

If n=1, then the maximum subsequence consists of the single number if that number is
nonnegative, or the empty subsequence otherwise. Consider a sequence
§=(xy,x3,...,x,) of size n>1. By induction, we know how to find a maximum
subsequence in §"=(x, x, ..., X,_;). If that maximum subsequence is empty, then all the
numbers in §” are negative, and we need to consider only x,. Assume that the maximum
subsequence found by induction in §” is §"y = (x;, X;41, ..., X;), for certain i and j such that
1<i<j<n-1. If j=n-1 (namely, the maximum subsequence is a suffix), then it is easy
to extend the solution to S: If x, is positive, then it extends S’y,; otherwise, $’y, remains
maximum. However, if j<n—1, then there are two possibilities. Either '), remains
maximum, or there is another subsequence, which is not maximum in §’, but is maximum
in § when x,, is added to it.

The key idea here is to strengthen the induction hypothesis. We first illustrate
the technique by using it to solve the maximum-subsequence problem, then discuss it in
more generality in the next section. The problem we had with the straightforward
induction hypothesis was that x, may extend a subsequence that is not maximum in §’,
and thus may create a new maximum subsequence. Knowing only the maximum
subsequence in §” is thus not sufficient. However, x, can extend only a subsequence that



5.9 Strengthening the Induction Hypothesis 107

ends at n—1 — that is, a suffix of §". Suppose that we strengthen the induction
hypothesis to include the knowledge of the maximum suffix, denoted by
S,E = (,rk,,rk+|,...,.r,,_l )

Stronger induction hypothesis: We know how to find, in sequences of size
< n, a maximum subsequence overall, and the maximum subsequence that is

a suffix.

If we know both subsequences, the algorithm becomes clear. We add x,, to the maximum
suffix. If the sum is more than the global maximum subsequence, then we have a new
maximum subsequence (as well as a new suffix). Otherwise, we retain the previous
maximum subsequence. We are not done yet. We also need to find the new maximum
suffix. It is not true that we always simply add x, to the previous maximum suffix. It
could be that the maximum suffix ending at x, is negative. In that case, it is better to take
the empty set as the maximum suffix (such that later x,,, will be considered by itself).
The algorithm for finding the sum of the maximum subsequence is given in Fig. 5.9.

Algorithm Maximum_Consecutive_Subsequence (X, n) ;
Input: X (an array of size n).
Output: Global_Max (the sum of the maximum subsequence).

begin
Global Max :=0;
Suffix_Max :=0;
Jori:=1tondo
if x[i] + Suffix_Max > Global_Max then
Suffix_Max := Suffix Max + x[i];
Global_Max := Suffix_Max
else if x[i] + Suffix_Max > O then
Suffix_Max := x[i] + Suffix_Max
else Suffix_Max :=0
end

Figure 5.9 Algorithm Maximum_Consecutive_Subsequence.

3.9 Strengthening the Induction Hypothesis

Strengthening the induction hypothesis is one of the most important techniques for
proving mathematical theorems with induction. When attempting an inductive proof, we
often encounter the following scenario. Denote the theorem by P. The induction
hypothesis can be denoted by P (< n), and the proof must conclude that P (< n)=> P (n).
In many cases, we can add another assumption, call it Q, under which the proof becomes
easier. That is, it is easier to prove [P and Q)(<n) = P(n) than it is to prove
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P (< n)=>P(n). The assumption seems correct, but it is not clear how we can prove it.
The trick is to include Q in the induction hypothesis. We now have to prove that [P and
Q](<n) = [P and Q](n). P and Q is a stronger theorem than just P, but often stronger
theorems are easier to prove. This process can be repeated and, with the right added
assumptions, the proof becomes tractable. The maximum-subsequence problem is a
good example of how this principle is used to improve algorithms.

A nice analogy to this principle is a well-known phenomenon: It is easier to add $1
million to profits that are based on $100 million of sales, than it is to add $1 thousand to
profits that are based on $10 of sales.

The most common error people make while using this technique is to ignore the
fact that an additional assumption was added and to forget to adjust the proof. In other
words, they prove that [P and Q](<n) = P(n), without even noticing that Q was
assumed. This oversight corresponds to forgetting to compute the new maximum suffix
in the maximum-subsequence example. In the balance factors example, it corresponds to
forgetting to compute the heights separately — which, unfortunately, is a common error.
We cannot overemphasize this fact:

It is crucial to follow the induction hypothesis precisely.

We will present more complicated examples of strengthening the induction hypothesis in
Sections 6.11.3, 6.13.1, 7.5, 8.3, and 12.3.1 (among others).

5.10 Dynamic Programming: The Knapsack Problem

Suppose that we are given a knapsack and we want to pack it fully with items. There
may be many different items of different shapes and sizes, and our only goal is to pack
the knapsack as full as possible. The knapsack may correspond to a truck, a ship, or a
silicon chip, and the problem is to package items. There are many variations of this
problem; we consider only a simple one dealing with one-dimensional items. Other
variations of the knapsack problem are presented in the exercises, and in Chapter 11.

The Problem Given an integer K and n items of different sizes such
that the ith item has an integer size k;, find a subset of the items whose
sizes sum to exactly K, or determine that no such subset exists.
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