Today’s topics

- Image Segmentation
- Strip Mining
- Reading: 7.5, 7.6, 7.10-7.12

Minimum Cut Applications

- Image Segmentation
- Open Pit Mining / Task Selection Problem
- Reduction to Min Cut problem

S, T is a cut if S, T is a partition of the vertices with
s in S and t in T
The capacity of an S, T cut is the sum of the capacities of
all edges going from S to T

Separate Lion from Savana

Image analysis

- \(a_i \): penalty of assigning pixel i to the foreground
- \(b_i \): penalty of assigning pixel i to the background
- \(p_{ij} \): penalty for assigning i to the foreground, j to the
 background or vice versa
- A: foreground, B: background
- \(Q(A,B) = \sum_{i \in A} a_i + \sum_{j \in B} b_j + \sum_{(i,j) \in E, i \in A, j \in B} p_{ij} \)
- Minimize \(Q(A,B) \)
- Assume foreground/background penalties are either
 infinite or zero
 – So they just require some pixels to be
 foreground/background
Open Pit Mining

- Each unit of earth has a profit (possibly negative)
- Getting to the ore below the surface requires removing the dirt above
- Test drilling gives reasonable estimates of costs
- Plan an optimal mining operation

Application of Min-cut

- Open Pit Mining Problem
- Task Selection Problem
- Reduction to Min Cut problem

S, T is a cut if S, T is a partition of the vertices with s in S and t in T. The capacity of an S, T cut is the sum of the capacities of all edges going from S to T.
Determine an optimal mine

Generalization

- Precedence graph $G=(V,E)$
- Each v in V has a profit $p(v)$
- A set F is feasible if when w in F, and (v,w) in E, then v in F.
- Find a feasible set to maximize the profit

Min cut algorithm for profit maximization

- Construct a flow graph where the minimum cut identifies a feasible set that maximizes profit

Precedence graph construction

- Precedence graph $G=(V,E)$
- Each edge in E has infinite capacity
- Add vertices s, t
- Each vertex in V is attached to s and t with finite capacity edges

Find a finite value cut with at least two vertices on each side of the cut

The sink side of a finite cut is a feasible set

- No edges permitted from S to T
- If a vertex is in T, all of its ancestors are in T
Setting the costs

• If \(p(v) > 0 \),
 - \(\text{cap}(v,t) = p(v) \)
 - \(\text{cap}(s,v) = 0 \)
• If \(p(v) < 0 \)
 - \(\text{cap}(s,v) = -p(v) \)
 - \(\text{cap}(v,t) = 0 \)
• If \(p(v) = 0 \)
 - \(\text{cap}(s,v) = 0 \)
 - \(\text{cap}(v,t) = 0 \)

Minimum cut gives optimal solution

Why?

Computing the Profit

• \(\text{Cost}(W) = \sum_{w \in W; p(w) < 0} -p(w) \)
• \(\text{Benefit}(W) = \sum_{w \in W; p(w) > 0} p(w) \)
• \(\text{Profit}(W) = \text{Benefit}(W) - \text{Cost}(W) \)

• Maximum cost and benefit
 - \(C = \text{Cost}(V) \)
 - \(B = \text{Benefit}(V) \)

Express Cap(S,T) in terms of B, C, Cost(T), Benefit(T), and Profit(T)

\[
\text{Cap}(S,T) = \text{Cost}(T) + \text{Ben}(S) = \text{Cost}(T) + \text{Ben}(S) + \text{Ben}(T) - \text{Ben}(T) = B + \text{Cost}(T) - \text{Ben}(T) = B - \text{Profit}(T)
\]

The Theory of NP-Completeness

Jack Edmonds
Non-deterministic polynomial time
• Problems where "yes" instances have polynomial time checkable certificates

Circuit Satisfiability is NP Complete

Karp’s 21 NP-Complete Problems
• Circuit Sat ⊆ 3-SAT
• 3-SAT ⊆ Independent Set
• 3-SAT ⊆ Vertex Cover
• Independent Set ⊆ Clique
• 3-SAT ⊆ Hamiltonian Circuit
• Hamiltonian Circuit ⊆ Traveling Salesman
• 3-SAT ⊆ Integer Linear Programming
• 3-SAT ⊆ Graph Coloring
• 3-SAT ⊆ Subset Sum
• Subset Sum ⊆ Scheduling with Release times and deadlines