Announcements

- Final Exam, March 18, 2:30-4:20 pm
- Practice Exams available

Today’s topics

- Network flow reductions
 - Multi source flow
 - Reviewer Assignment
- Baseball Scheduling
- Image Segmentation
- Reading: 7.5, 7.6, 7.10-7.12

Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, c(e) >= 0
- Problem, assign flows f(e) to the edges such that:
 - 0 <= f(e) <= c(e)
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is as large as possible

Key Ideas for Network Flow

- Residual Graph for a Flow
- Augmenting a flow
- Ford Fulkerson Algorithm
- Max Flow / Min Cut Theorem
- Practical Flow Algorithms
- Modelling problems as Network Flow or Minimum Cut
Multi-source network flow

- Multi-source network flow
 - Sources s_1, s_2, \ldots, s_k
 - Sinks t_1, t_2, \ldots, t_j
- Solve with Single source network flow

Bipartite Matching

- A graph $G=(V,E)$ is bipartite if the vertices can be partitioned into disjoint sets X,Y
- A matching M is a subset of the edges that does not share any vertices
- Find a matching as large as possible

Converting Matching to Network Flow

Integrality Theorem

Theorem: If all capacities are integers, then there exists a maximum flow where all edges are assigned integer valued flows

Resource Allocation: Assignment of reviewers

- A set of papers P_1, \ldots, P_n
- A set of reviewers R_1, \ldots, R_m
- Paper P_i requires A_i reviewers
- Reviewer R_j can review B_j papers
- For each reviewer R_j, there is a list of paper L_{j1}, \ldots, L_{jk} that R_j is qualified to review

Baseball elimination

- Can the Dinosaurs win the league?
- Remaining games:
 - AB, AC, AD, AD, AD, BC, BC, BC, BD, CD

A team wins the league if it has strictly more wins than any other team at the end of the season.
A team ties for first place if no team has more wins, and there is some other team with the same number of wins.
Baseball elimination

• Can the Fruit Flies win or tie the league?
• Remaining games:

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ants</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>Bees</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>Cockroaches</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>Dinosaurs</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Earthworms</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Fruit Flies</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

Assume Fruit Flies win remaining games

• Fruit Flies are tied for first place if no team wins more than 19 games
• Allowable wins:
 – Ants (2)
 – Bees (3)
 – Cockroaches (3)
 – Dinosaurs (5)
 – Earthworms (5)
• 18 games to play:

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ants</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>Bees</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Cockroaches</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>Dinosaurs</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Earthworms</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>Fruit Flies</td>
<td>19</td>
<td>15</td>
</tr>
</tbody>
</table>

Remaining games

AC, AD, AD, BC, BC, BC, BD, BE, BE, BE, CE, CE, CE, DE

Image Segmentation

• Separate foreground from background

Minimum Cut Applications

• Image Segmentation
• Open Pit Mining / Task Selection Problem
• Reduction to Min Cut problem

S, T is a cut if S, T is a partition of the vertices with s in S and t in T
The capacity of an S, T cut is the sum of the capacities of all edges going from S to T
Image analysis

- a_i: value of assigning pixel i to the foreground
- b_i: value of assigning pixel i to the background
- p_{ij}: penalty for assigning i to the foreground, j to the background or vice versa
- A: foreground, B: background
- $Q(A,B) = \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{(i,j) \in E, i \in A, j \in B} p_{ij}$

Pixel graph to flow graph

Min cut Construction

[Diagram of pixel graph and flow graph with annotations for a_i, b_i, p_{uv}]