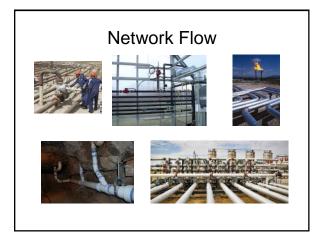
CSE 421 Algorithms

Lecture 22 Network Flow, Part 2



Outline

- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem
- Simple applications of Max Flow

Ford-Fulkerson Algorithm (1956)

while not done

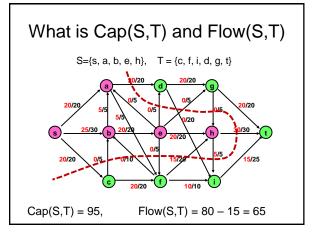
Construct residual graph G_R Find an s-t path P in G_R with capacity b > 0 Add b units along in G

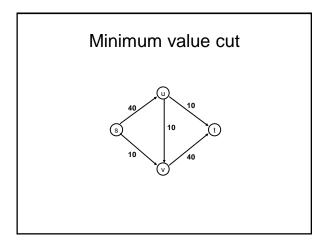
If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations

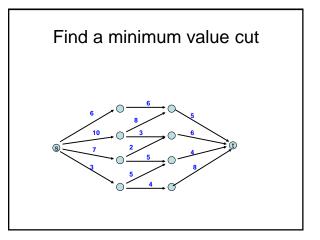
Cuts in a graph

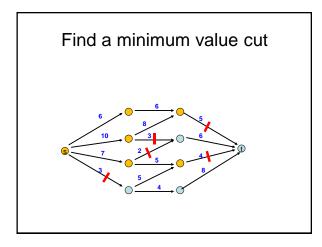
- Cut: Partition of V into disjoint sets S, T with s in S and t in T.
- Cap(S,T): sum of the capacities of edges from S to T
- Flow(S,T): net flow out of S

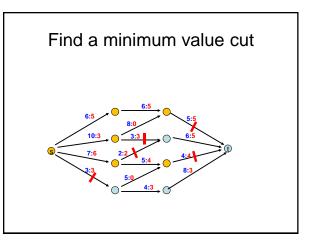
 Sum of flows out of S minus sum of flows into S
- Flow(S,T) <= Cap(S,T)

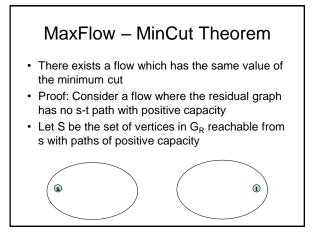


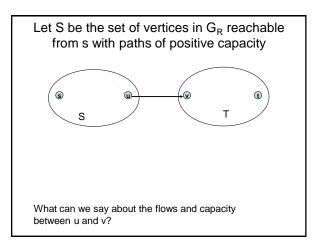












Max Flow - Min Cut Theorem

- Ford-Fulkerson algorithm finds a flow where the residual graph is disconnected, hence FF finds a maximum flow.
- If we want to find a minimum cut, we begin by looking for a maximum flow.

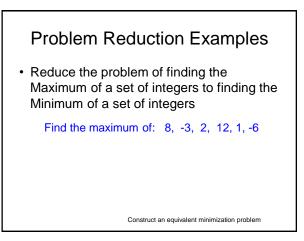
Performance • The worst case performance of the Ford-Fulkerson algorithm is horrible

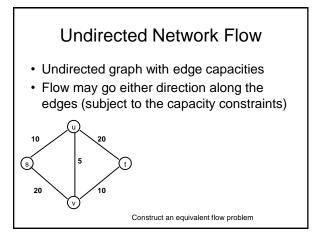
Better methods of finding augmenting paths

- Find the maximum capacity augmenting path
 - $-O(m^2log(C))$ time algorithm for network flow
- Find the shortest augmenting path – O(m²n) time algorithm for network flow
- Find a blocking flow in the residual graph
- O(mnlog n) time algorithm for network flow

Problem Reduction

- Reduce Problem A to Problem B
 - Convert an instance of Problem A to an instance of Problem B
 - Use a solution of Problem B to get a solution to Problem A
- Practical
 - Use a program for Problem B to solve Problem A
- Theoretical
 - Show that Problem B is at least as hard as Problem A





Bipartite Matching

- A graph G=(V,E) is bipartite if the vertices can be partitioned into disjoints sets X,Y
- A matching M is a subset of the edges that does not share any vertices
- Find a matching as large as possible

Application		
 A collection of teachers A collection of courses And a graph showing which teachers can teach which courses 		
RA 🔵	\bigcirc	311
рв 🔘	\bigcirc	331
ME 🔘	\bigcirc	332
DG 🔘	\bigcirc	401
AK 🔵	\bigcirc	421

