Network Flow
Outline

• Network flow definitions
• Flow examples
• Augmenting Paths
• Residual Graph
• Ford Fulkerson Algorithm
• Cuts
• Maxflow-MinCut Theorem
• Simple applications of Max Flow
Ford-Fulkerson Algorithm (1956)

while not done

 Construct residual graph G_R
 Find an s-t path P in G_R with capacity $b > 0$
 Add b units along in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations
Cuts in a graph

• Cut: Partition of V into disjoint sets S, T with s in S and t in T.
• Cap(S,T): sum of the capacities of edges from S to T
• Flow(S,T): net flow out of S
 – Sum of flows out of S minus sum of flows into S

• Flow(S,T) <= Cap(S,T)
What is $\text{Cap}(S,T)$ and $\text{Flow}(S,T)$?

$S=\{s, a, b, e, h\}, \quad T=\{c, f, i, d, g, t\}$

$\text{Cap}(S,T) = 95, \quad \text{Flow}(S,T) = 80 - 15 = 65$
Minimum value cut
Find a minimum value cut
Find a minimum value cut
Find a minimum value cut
MaxFlow – MinCut Theorem

• There exists a flow which has the same value of the minimum cut
• Proof: Consider a flow where the residual graph has no s-t path with positive capacity
• Let S be the set of vertices in G_R reachable from s with paths of positive capacity
Let S be the set of vertices in G_R reachable from s with paths of positive capacity.

What can we say about the flows and capacity between u and v?
Max Flow - Min Cut Theorem

• Ford-Fulkerson algorithm finds a flow where the residual graph is disconnected, hence FF finds a maximum flow.

• If we want to find a minimum cut, we begin by looking for a maximum flow.
Performance

• The worst case performance of the Ford-Fulkerson algorithm is horrible
Better methods of finding augmenting paths

- Find the maximum capacity augmenting path
 - $O(m^2 \log(C))$ time algorithm for network flow
- Find the shortest augmenting path
 - $O(m^2n)$ time algorithm for network flow
- Find a blocking flow in the residual graph
 - $O(mn \log n)$ time algorithm for network flow
Problem Reduction

• Reduce Problem A to Problem B
 – Convert an instance of Problem A to an instance of Problem B
 – Use a solution of Problem B to get a solution to Problem A

• Practical
 – Use a program for Problem B to solve Problem A

• Theoretical
 – Show that Problem B is at least as hard as Problem A
Problem Reduction Examples

• Reduce the problem of finding the Maximum of a set of integers to finding the Minimum of a set of integers

 Find the maximum of: 8, -3, 2, 12, 1, -6

Construct an equivalent minimization problem
Undirected Network Flow

- Undirected graph with edge capacities
- Flow may go either direction along the edges (subject to the capacity constraints)

Construct an equivalent flow problem
Bipartite Matching

• A graph $G=(V,E)$ is bipartite if the vertices can be partitioned into disjoint sets X,Y

• A matching M is a subset of the edges that does not share any vertices

• Find a matching as large as possible
Application

- A collection of teachers
- A collection of courses
- And a graph showing which teachers can teach which courses

<table>
<thead>
<tr>
<th>Teacher</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>311</td>
</tr>
<tr>
<td>PB</td>
<td>331</td>
</tr>
<tr>
<td>ME</td>
<td>332</td>
</tr>
<tr>
<td>DG</td>
<td>401</td>
</tr>
<tr>
<td>AK</td>
<td>421</td>
</tr>
</tbody>
</table>
Converting Matching to Network Flow
Finding edge disjoint paths

Construct a maximum cardinality set of edge disjoint paths