CSE 421
Algorithms
Lecture 21
Network Flow, Part 1

Announcements
• Sample finals posted
• No questions planned on NP-completeness

Network Flow
Outline
• Network flow definitions
• Flow examples
• Augmenting Paths
• Residual Graph
• Ford Fulkerson Algorithm
• Cuts
• Maxflow-MinCut Theorem

Network Flow Definitions
• Capacity
• Source, Sink
• Capacity Condition
• Conservation Condition
• Value of a flow

Flow Example
Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, c(e) >= 0
- Problem, assign flows f(e) to the edges such that:
 - 0 <= f(e) <= c(e)
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is as large as possible

Flow Example

Find a maximum flow

Residual Graph

- Flow graph showing the remaining capacity
- Flow graph G, Residual Graph G_R
 - G: edge e from u to v with capacity c and flow f
 - G_R: edge e' from u to v with capacity c - f
 - G_R: edge e'' from v to u with capacity f

Flow assignment and the residual graph
Augmenting Path Algorithm

- Augmenting path
 - Vertices v_1, v_2, \ldots, v_k
 - $v_1 = s$, $v_k = t$
 - Possible to add b units of flow between v_j and v_{j+1} for $j = 1 \ldots k-1$

Build the residual graph

Find two augmenting paths

Augmenting Path Lemma

- Let $P = v_1, v_2, \ldots, v_k$ be a path from s to t with minimum capacity b in the residual graph.
- b units of flow can be added along the path P in the flow graph.

Proof

- Add b units of flow along the path P
- What do we need to verify to show we have a valid flow after we do this?

Ford-Fulkerson Algorithm (1956)

while not done
 Construct residual graph G_R
 Find an s-t path P in G_R with capacity $b > 0$
 Add b units along in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations
Cuts in a graph

- Cut: Partition of V into disjoint sets S, T with s in S and t in T.
- \(\text{Cap}(S,T) \): sum of the capacities of edges from S to T
- \(\text{Flow}(S,T) \): net flow out of S
 - Sum of flows out of S minus sum of flows into S
- \(\text{Flow}(S,T) \leq \text{Cap}(S,T) \)

What is Cap(S,T) and Flow(S,T)

\[S = \{s, a, b, e, h\}, \quad T = \{c, f, i, d, g, t\} \]

\(\text{Cap}(S,T) = 95, \quad \text{Flow}(S,T) = 80 - 15 = 65 \)

Minimum value cut

Find a minimum value cut
Find a minimum value cut

MaxFlow – MinCut Theorem

- There exists a flow which has the same value of the minimum cut
- Proof: Consider a flow where the residual graph has no s-t path with positive capacity
- Let S be the set of vertices in G_R reachable from s with paths of positive capacity

Let S be the set of vertices in G_R reachable from s with paths of positive capacity

Max Flow - Min Cut Theorem

- Ford-Fulkerson algorithm finds a flow where the residual graph is disconnected, hence FF finds a maximum flow.
- If we want to find a minimum cut, we begin by looking for a maximum flow.