

1

Shortest Paths with Dynamic
Programming

3

Lemma
- If a graph has no negative cost cycles,
then the shortest paths are simple paths
- Shortest paths have at most n-1 edges

5

Announcements

- HW 8 Available
- Due Friday, March 15
- Final Exam
-2:30-4:20 pm, Monday, March 18, THO 101

2

Shortest Path Problem

- Dijkstra's Single Source Shortest Paths Algorithm
- O(mlog n) time, positive cost edges
- Bellman-Ford Algorithm
$-\mathrm{O}(\mathrm{mn})$ time for graphs which can have negative cost edges

4

Shortest paths with a fixed number of edges

- Find the shortest path from s to w with exactly k edges

Express as a recurrence

- Compute distance from starting vertex s
- $\operatorname{Opt}_{\mathrm{k}}(\mathrm{w})=\min _{\mathrm{x}}\left[\operatorname{Opt}_{\mathrm{k}-1}(\mathrm{x})+\mathrm{c}_{\mathrm{xw}}\right]$
- $\operatorname{Opt}_{0}(\mathrm{w})=0$ if $\mathrm{w}=\mathrm{s}$ and infinity otherwise

7

Algorithm, Version 2
for each w
$M[0, w]=$ infinity;
$M[0, s]=0 ;$
for $i=1$ to $n-1$
for each w
$M[i, w]=\min \left(M[i-1, w], \min _{x}(M[i-1, x]+\operatorname{cost}[x, w])\right)$

9

Correctness Proof for Algorithm 3

- Key lemma - at the end of iteration i, for all w, M[w] <= M[i, w];

Algorithm, Version 1

for each w
$\mathrm{M}[0, w]=$ infinity;
$\mathrm{M}[0, \mathrm{~s}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
for each w
$\mathrm{M}[i, w]=\min _{\mathrm{x}}(\mathrm{M}[i-1, \mathrm{x}]+\operatorname{cost}[\mathrm{x}, \mathrm{w}]) ;$

8

Algorithm, Version 3
for each w
$\mathrm{M}[\mathrm{w}]=$ infinity;
$\mathrm{M}[\mathrm{s}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
for each w
$M[w]=\min \left(M[w], \min _{x}(M[x]+\operatorname{cost}[x, w])\right)$

10

Algorithm, Version 4
for each w
$\mathrm{M}[\mathrm{w}]=$ infinity;
$\mathrm{M}[\mathrm{s}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
for each w
for each x
if $(M[w]>M[x]+\operatorname{cost}[x, w])$
$P[w]=x$
$M[w]=M[x]+\operatorname{cost}[x, w]$

12

If the pointer graph has a cycle, then the graph has a negative cost cycle

- If $P[w]=x$ then $M[w]>=M[x]+\operatorname{cost}(x, w)$
- Equal when w is updated
- $M[x]$ could be reduced after update
- Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{k}}$ be a cycle in the pointer graph with (v_{k}, v_{1}) the last edge added
- Just before the update
- $M\left[v_{j}\right]>=M\left[v_{j+1}\right]+\operatorname{cost}\left(v_{j+1}, v_{j}\right)$ for $j<k$
- $M\left[v_{k}\right]>M\left[v_{1}\right]+\operatorname{cost}\left(v_{1}, v_{k}\right)$
- Adding everything up
- $0>\operatorname{cost}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)+\operatorname{cost}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)+\ldots+\operatorname{cost}\left(\mathrm{v}_{\mathrm{k}}, \mathrm{v}_{1}\right)$

13

Finding negative cost cycles

- What if you want to find negative cost cycles?

15

17

Negative Cycles

- If the pointer graph has a cycle, then the graph has a negative cycle
- Therefore: if the graph has no negative cycles, then the pointer graph has no negative cycles

14

What about finding Longest Paths

- Can we just change Min to Max?

16

18

Outline

- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem

19

21

Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, $c(e)>=0$
- Problem, assign flows $f(e)$ to the edges such that:
$-0<=\mathrm{f}(\mathrm{e})<=\mathrm{c}(\mathrm{e})$
- Flow is conserved at vertices other than s and t
- Flow conservation: flow going into a vertex equals the flow going out
- The flow leaving the source is a large as possible

Network Flow Definitions

- Capacity
- Source, Sink
- Capacity Condition
- Conservation Condition
- Value of a flow

20

Flow assignment and the residual graph

24

25

Augmenting Path Algorithm

- Augmenting path
- Vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$
- $\mathrm{v}_{1}=\mathrm{s}, \mathrm{v}_{\mathrm{k}}=\mathrm{t}$
- Possible to add b units of flow between v_{j} and v_{j+1} for $\mathrm{j}=1$... k-1

26

