CSE 421 Algorithms

Richard Anderson

Lecture 20

Shortest Paths and Network Flow

Announcements

- HW 8 Available
 - Due Friday, March 15
- Final Exam
 - 2:30-4:20 pm, Monday, March 18, THO 101

Shortest Paths with Dynamic Programming

Shortest Path Problem

- Dijkstra's Single Source Shortest Paths Algorithm
 - O(mlog n) time, positive cost edges
- Bellman-Ford Algorithm
 - O(mn) time for graphs which can have negative cost edges

Lemma

 If a graph has no negative cost cycles, then the shortest paths are simple paths

Shortest paths have at most n-1 edges

Shortest paths with a fixed number of edges

 Find the shortest path from s to w with exactly k edges

Express as a recurrence

Compute distance from starting vertex s

- $Opt_k(w) = min_x [Opt_{k-1}(x) + c_{xw}]$
- $Opt_0(w) = 0$ if w = s and infinity otherwise

```
for each w M[0, w] = infinity; M[0, s] = 0; for i = 1 to n-1 for each w M[i, w] = min_x(M[i-1,x] + cost[x,w]);
```

```
for each w M[0, w] = infinity; M[0, s] = 0; for i = 1 to n-1 for each w M[i, w] = min(M[i-1, w], min_x(M[i-1,x] + cost[x,w]))
```

```
for each w M[w] = infinity; M[s] = 0; for i = 1 to n-1 for each w M[w] = min(M[w], min_x(M[x] + cost[x,w]))
```

Correctness Proof for Algorithm 3

 Key lemma – at the end of iteration i, for all w, M[w] <= M[i, w];

```
for each w
  M[w] = infinity;
M[s] = 0;
for i = 1 to n-1
  for each w
     for each x
        if (M[w] > M[x] + cost[x,w])
           P[w] = x
           M[w] = M[x] + cost[x,w]
```

If the pointer graph has a cycle, then the graph has a negative cost cycle

- If P[w] = x then M[w] >= M[x] + cost(x,w)
 - Equal when w is updated
 - M[x] could be reduced after update
- Let v₁, v₂,...v_k be a cycle in the pointer graph with (v_k,v₁) the last edge added
 - Just before the update
 - $M[v_i] >= M[v_{i+1}] + cost(v_{i+1}, v_i)$ for j < k
 - $M[v_k] > M[v_1] + cost(v_1, v_k)$
 - Adding everything up
 - $0 > cost(v_1, v_2) + cost(v_2, v_3) + ... + cost(v_k, v_1)$

Negative Cycles

- If the pointer graph has a cycle, then the graph has a negative cycle
- Therefore: if the graph has no negative cycles, then the pointer graph has no negative cycles

Finding negative cost cycles

What if you want to find negative cost cycles?

What about finding Longest Paths

Can we just change Min to Max?

Foreign Exchange Arbitrage

		USD		
	0.8		3.0	3
EUR				CAD
EUK		1.6		CAD

	USD	EUR	CAD
USD		0.8	1.2
EUR	1.2		1.6
CAD	0.8	0.6	

Network Flow

Outline

- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem

Network Flow Definitions

- Capacity
- Source, Sink
- Capacity Condition
- Conservation Condition
- Value of a flow

Flow Example

Flow assignment and the residual graph

Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, c(e) >= 0
- Problem, assign flows f(e) to the edges such that:
 - $0 \le f(e) \le c(e)$
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is a large as possible

Find a maximum flow

Value of flow:

Find a maximum flow

Augmenting Path Algorithm

- Augmenting path
 - Vertices v_1, v_2, \dots, v_k
 - $V_1 = S$, $V_k = t$
 - Possible to add b units of flow between v_j and v_{j+1} for j = 1 ... k-1

