CSE 421
Algorithms
Richard Anderson
Lecture 19
Memory Efficient Dynamic Programming

Announcements
• Office Hours, 2:30 pm, MW, CSE2 344

Longest Common Subsequence
• $C=c_1...c_g$ is a subsequence of $A=a_1...a_m$ if C can be obtained by removing elements from A (but retaining order)
• LCS(A, B): A maximum length sequence that is a subsequence of both A and B

$LCS(\text{BARTHOLEMEWSIMPSON, KRUSTYTHECLOWN}) = \text{RTHOWN}$

LCS Optimization
• $A = a_1a_2...a_m$
• $B = b_1b_2...b_n$
• $\text{Opt}[j, k]$ is the length of LCS$(a_1a_2...a_j, b_1b_2...b_k)$

Optimization recurrence
If $a_j = b_k$, $\text{Opt}[j,k] = 1 + \text{Opt}[j-1,k-1]$
If $a_j \neq b_k$, $\text{Opt}[j,k] = \max(\text{Opt}[j-1,k], \text{Opt}[j,k-1])$

Dynamic Programming Computation
Code to compute Opt\[n, m\]

\[
\text{for (int } i = 0; i < n; i++)
\]
\[
\text{for (int } j = 0; j < m; j++)
\]
\[
\text{if (A[} i] == B[} j]
\]
\[
\text{Opt[} i, j \] = Opt[i-1, j-1] + 1;
\]
\[
\text{else if (Opt[i-1, j] >= Opt[i, j-1])}
\]
\[
\text{Opt[i, j] := Opt[i-1, j];}
\]
\[
\text{else}
\]
\[
\text{Opt[i, j] := Opt[i, j-1];}
\]

Storing the path information

For i = 1 to m:
Opt[i, 0] = 0;

For j = 1 to n:
Opt[0, j] = 0;

For i = 1 to m:
For j = 1 to n:
If A[i] = B[j]:
Opt[i, j] := Opt[i-1, j-1] + 1;
Else if Opt[i-1, j] >= Opt[i, j-1]:
Opt[i, j] := Opt[i-1, j];
Else:
Opt[i, j] := Opt[i, j-1];

Reconstructing Path from Distances

How good is this algorithm?

- Is it feasible to compute the LCS of two strings of length 300,000 on a standard desktop PC? Why or why not.

Implementation 1

```csharp
public int ComputeLCS()
{
    int n = str1.Length;
    int m = str2.Length;

    int[,] opt = new int[n + 1, m + 1];
    for (int i = 0; i <= n; i++)
        opt[ i, 0 ] = 0;
    for (int j = 0; j <= m; j++)
        opt[0, j] = 0;

    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= m; j++)
            if (str1[ i-1 ] == str2[ j-1 ])
                opt[ i, j ] = opt[ i-1, j-1 ] + 1;
            else if (opt[ i-1, j ] >= opt[ i, j-1 ])
                opt[ i, j ] = opt[ i-1, j ];
            else
                opt[ i, j ] = opt[ i, j-1 ];

    return opt[n, m];
}
```

N = 17000

Runtime should be about 5 seconds*

* Personal PC, 3 years old
Implementation 2

```csharp
public int SpaceEfficientLCS() {
    int n = str1.Length;
    int m = str2.Length;
    int[] prevRow = new int[n + 1];
    int[] currRow = new int[n + 1];
    for (int j = 0; j <= m; j++)
        prevRow[j] = 0;
    for (int i = 1; i <= n; i++) {
        currRow[0] = 0;
        for (int j = 1; j <= m; j++) {
            if (str1[i - 1] == str2[j - 1])
                currRow[j] = prevRow[j - 1] + 1;
            else if (prevRow[j] >= currRow[j - 1])
                currRow[j] = prevRow[j];
            else
                currRow[j] = currRow[j - 1];
        }
        for (int j = 1; j <= m; j++)
            prevRow[j] = currRow[j];
    }
    return currRow[m];
}
```

Observations about the Algorithm

- The computation can be done in \(O(m+n)\) space if we only need one column of the Opt values or Best Values
- The algorithm can be run from either end of the strings

Computing LCS in \(O(nm)\) time and \(O(n+m)\) space

- Divide and conquer algorithm
- Recomputing values used to save space

Constrained LCS

- \(\text{LCS}_{i,j}(A,B):\) The LCS such that
 - \(a_1,\ldots,a_i\) paired with elements of \(b_1,\ldots,b_j\)
 - \(a_{i+1},\ldots,a_m\) paired with elements of \(b_{j+1},\ldots,b_n\)
- \(\text{LCS}_{4,3}(abbacbb, cbbaa)\)
A = RRSSRTTRRTS
B = RTSRRSTST

Compute LCS_{5,0}(A,B), LCS_{5,1}(A,B),…,LCS_{5,9}(A,B)

<table>
<thead>
<tr>
<th></th>
<th>left</th>
<th>right</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Computing the middle column
- From the left, compute LCS(a_1…a_{m/2},b_1…b_j)
- From the right, compute LCS(a_{m/2+1}…a_m,b_{j+1}…b_n)
- Add values for corresponding j’s

Note – this is space efficient

Divide and Conquer
- A = a_1,…,a_m
- B = b_1,…,b_n
- Find j such that
 - LCS(a_1…a_{m/2},b_1…b_j) and
 - LCS(a_{m/2+1}…a_m,b_{j+1}…b_n) yield optimal solution
- Recurse

Algorithm Analysis
- T(m,n) = T(m/2, j) + T(m/2, n-j) + cmn

Prove by induction that T(m,n) <= 2cmn
Memory Efficient LCS Summary

- We can afford $O(nm)$ time, but we can’t afford $O(nm)$ space
- If we only want to compute the length of the LCS, we can easily reduce space to $O(n+m)$
- Avoid storing the value by recomputing values
 - Divide and conquer used to reduce problem sizes