Announcements

- HW 7. Partially Posted
- I’ve moved
 - My new office: CSE2 344

Optimal linear interpolation

\[\text{Error} = \sum (y_i - ax_i - b)^2 \]

Optimal solution with \(k \) segments extends an optimal solution of \(k-1 \) segments on a smaller problem

Optimal linear interpolation with \(K \) segments

Variable number of segments

- Segments not specified in advance
- Penalty function associated with segments
- Cost = Interpolation error + \(C \times \#\text{Segments} \)

Penalty cost measure

\[\text{Opt}[j] = \min_i \{ \text{Opt}_{k-1}[i] + E_{ij} \} \text{ for } 0 < i < j \]

\[\text{Opt}[j] = \min_i (E_{1,j}, \min_i (\text{Opt}[i] + E_{ij} + P)) \]
Subset Sum Problem

- Let \(w_1, \ldots, w_n = \{6, 8, 9, 11, 13, 16, 18, 24\} \)
- Find a subset that has as large a sum as possible, without exceeding 50

Adding a variable for Weight

- \(\text{Opt}[j, K] \) the largest subset of \(\{w_1, \ldots, w_j\} \) that sums to at most \(K \)
- \(\{2, 4, 7, 10\} \)
 - \(\text{Opt}[2, 7] = \)
 - \(\text{Opt}[3, 7] = \)
 - \(\text{Opt}[3, 12] = \)
 - \(\text{Opt}[4, 12] = \)

Subset Sum Recurrence

- \(\text{Opt}[j, K] \) the largest subset of \(\{w_1, \ldots, w_j\} \) that sums to at most \(K \)

Subset Sum Grid

\[
\begin{array}{cccccccccccc}
4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\(\{2, 4, 7, 10\} \)

Subset Sum Code

\[
\text{for } j = 1 \text{ to } n \\
\text{for } k = 1 \text{ to } W \\
\text{Opt}[j, k] = \max(\text{Opt}[j-1, k], \text{Opt}[j-1, k-w_j] + w_j)
\]

Knapsack Problem

- Items have weights and values
- The problem is to maximize total value subject to a bound on weight
- Items \(\{I_1, I_2, \ldots, I_n\} \)
 - Weights \(\{w_1, w_2, \ldots, w_n\} \)
 - Values \(\{v_1, v_2, \ldots, v_n\} \)
 - Bound \(K \)
- Find set \(S \) of indices to:
 - Maximize \(\sum_{i \in S} v_i \) such that \(\sum_{i \in S} w_i \leq K \)
Knapsack Recurrence

Subset Sum Recurrence:
\[\text{Opt}[j, K] = \max(\text{Opt}[j - 1, K], \text{Opt}[j - 1, K - w_j] + w_j) \]

Knapsack Recurrence:

Knapsack Grid

\[\text{Opt}[j, K] = \max(\text{Opt}[j - 1, K], \text{Opt}[j - 1, K - w_j] + v_j) \]

Weights \{2, 4, 7, 10\} Values: \{3, 5, 9, 16\}

Dynamic Programming Examples

- Examples
 - Optimal Billboard Placement
 - Text, Solved Exercise, Pg 307
 - Linebreaking with hyphenation
 - Compare with HW problem 6, Pg 317
 - String approximation
 - Text, Solved Exercise, Page 309

Billboard Placement

- Maximize income in placing billboards
 - \(b_i = (p_i, v_i)\), \(v_i\): value of placing billboard at position \(p_i\)
- Constraint:
 - At most one billboard every five miles
- Example
 - \{(6,5), (8,6), (12, 5), (14, 1)\}

Design a Dynamic Programming Algorithm for Billboard Placement

- Compute \(\text{Opt}[1], \text{Opt}[2], \ldots, \text{Opt}[n]\)
- What is \(\text{Opt}[k]\)?

\(\text{Opt}[k] = \text{fun}(\text{Opt}[0], \ldots, \text{Opt}[k-1])\)

- How is the solution determined from sub problems?
Solution

\[j = 0; \quad \text{if \ } j \text{ is five miles behind the current position} \]

// the last valid location for a billboard, if one placed at \(P[k] \)
for \(k = 1 \) to \(n \)
 while \((P[j] < P[k] - 5) \)
 \(j := j + 1; \)
 \(j := j - 1; \)
 \(\text{Opt}[k] = \max(\text{Opt}[k-1], V[k] + \text{Opt}[j]); \)