

## Announcements

- HW 7. Partially Posted
- I've moved
- My new office: CSE2 344

- Penalty function associated with segments
- Cost = Interpolation error + C x \#Segments
$\bigcirc^{\circ} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
$\circ$ ○
$\circ$

$$
\text { Opt }_{\mathrm{k}}[\mathrm{j}]=\min _{\mathrm{i}}\left\{\text { Opt }_{\mathrm{k}-1}[\mathrm{i}]+\mathrm{E}_{\mathrm{i}, \mathrm{j}}\right\} \text { for } 0<\mathrm{i}<\mathrm{j}
$$

Optimal solution with k segments extends an optimal solution of $k-1$ segments on a


## Variable number of segments

- Segments not specified in advance


## Optimal linear interpolation

$$
\text { Error }=\sum\left(y_{i}-a x_{i}-b\right)^{2}
$$

## Penalty cost measure

- $\operatorname{Opt}[\mathrm{j}]=\min \left(\mathrm{E}_{1, \mathrm{j},}, \min _{\mathrm{i}}\left(\operatorname{Opt}[\mathrm{i}]+\mathrm{E}_{\mathrm{i}, \mathrm{j}}+\mathrm{P}\right)\right)$


## Subset Sum Problem

- Let $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}=\{6,8,9,11,13,16,18,24\}$
- Find a subset that has as large a sum as possible, without exceeding 50


## Adding a variable for Weight

- Opt[ $j, \mathrm{~K}]$ the largest subset of $\left\{\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{j}}\right\}$ that sums to at most K
- $\{2,4,7,10\}$
- Opt $[2,7]=$
- Opt [3, 7] =
- Opt[3,12] =
- Opt[4,12] =


## Subset Sum Recurrence

- Opt[ j, K ] the largest subset of $\left\{w_{1}, \ldots, w_{i}\right\}$ that sums to at most K


## Subset Sum Grid

$\operatorname{Opt}[\mathrm{j}, \mathrm{K}]=\max \left(\operatorname{Opt}[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{w}_{\mathrm{j}}\right)$

| 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

$\{2,4,7,10\}$

| Subset Sum Code |
| :---: |
| for $\mathrm{j}=1$ to $n$ <br> for $k=1$ to $w$ <br> Opt $[j, k]=\max \left(\right.$ Opt $[j-1, k]$, Opt $\left.\left[j-1, k-w_{j}\right]+w_{j}\right)$ |

## Knapsack Problem

- Items have weights and values
- The problem is to maximize total value subject to a bound on weght
- Items $\left\{I_{1}, I_{2}, \ldots I_{n}\right\}$
- Weights $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$
- Values $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
- Bound K
- Find set $S$ of indices to:
- Maximize $\sum_{\text {iss }} v_{i}$ such that $\sum_{\text {iss }} w_{i}<=K$


## Knapsack Recurrence

Subset Sum Recurrence:
$\operatorname{Opt}[\mathrm{j}, \mathrm{K}]=\max \left(\operatorname{Opt}[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{w}_{\mathrm{j}}\right)$

Knapsack Recurrence:

## Dynamic Programming Examples

- Examples
- Optimal Billboard Placement
- Text, Solved Exercise, Pg 307
- Linebreaking with hyphenation
- Compare with HW problem 6, Pg 317
- String approximation
- Text, Solved Exercise, Page 309

Design a Dynamic Programming Algorithm for Billboard Placement

- Compute Opt[1], Opt[2], . . ., Opt[n]
- What is Opt[k]?


## Billboard Placement

- Maximize income in placing billboards $-b_{i}=\left(p_{i}, v_{i}\right), v_{i}$ : value of placing billboard at position $\mathrm{p}_{\mathrm{i}}$
- Constraint:
- At most one billboard every five miles
- Example
$-\{(6,5),(8,6),(12,5),(14,1)\}$
Opt[k] = fun(Opt[0], ..,Opt[k-1])
- How is the solution determined from sub problems?

| $\mathrm{j}=0 ; \quad / / \mathrm{j}$ is five miles behind the current position <br> // the last valid location for a billboard, if one placed at P[k] <br> for $\mathrm{k}:=1$ to n $\begin{aligned} & \text { while ( } \mathrm{P}[\mathrm{j}]<\mathrm{P}[\mathrm{k}]-5 \text { ) } \\ & \qquad \mathrm{j}:=\mathrm{j}+1 ; \\ & \mathrm{j}:=\mathrm{j}-1 ; \end{aligned}$ <br> Opt[ k] = Max (Opt[ k-1], V[ k ] + Opt[ j ]); |  |
| :---: | :---: |

