CSE 421
Algorithms

Richard Anderson
Lecture 17, Winter 2019
Dynamic Programming
Announcements

- HW 7. Partially Posted
- I’ve moved
 - My new office: CSE2 344
Optimal linear interpolation with K segments

Error $= \sum (y_i - ax_i - b)^2$
Optimal solution with k segments extends an optimal solution of $k-1$ segments on a smaller problem.

$$
\text{Opt}_k[i,j] = \min_i \{ \text{Opt}_{k-1}[i] + E_{i,j} \} \text{ for } 0 < i < j
$$
Variable number of segments

• Segments not specified in advance
• Penalty function associated with segments
• Cost = Interpolation error + C x #Segments
Penalty cost measure

- $\text{Opt}[j] = \min(E_{1,j}, \min_i(\text{Opt}[i] + E_{i,j} + P))$
Subset Sum Problem

- Let \(w_1, \ldots, w_n = \{6, 8, 9, 11, 13, 16, 18, 24\} \)
- Find a subset that has as large a sum as possible, without exceeding 50
Adding a variable for Weight

- $\text{Opt}[j, K]$ the largest subset of $\{w_1, \ldots, w_j\}$ that sums to at most K
- $\{2, 4, 7, 10\}$
 - $\text{Opt}[2, 7] =$
 - $\text{Opt}[3, 7] =$
 - $\text{Opt}[3, 12] =$
 - $\text{Opt}[4, 12] =$
Subset Sum Recurrence

• $\text{Opt}[j, K]$ the largest subset of $\{w_1, \ldots, w_j\}$ that sums to at most K
Subset Sum Grid

Opt[j, K] = max(Opt[j – 1, K], Opt[j – 1, K – w_j] + w_j)

{2, 4, 7, 10}
Subset Sum Code

for j = 1 to n
 for k = 1 to W
 Opt[j, k] = max(Opt[j-1, k], Opt[j-1, k-w_j] + w_j)
Knapsack Problem

• Items have weights and values
• The problem is to maximize total value subject to a bound on weight
• Items \{I_1, I_2, \ldots, I_n\}
 – Weights \{w_1, w_2, \ldots, w_n\}
 – Values \{v_1, v_2, \ldots, v_n\}
 – Bound K
• Find set S of indices to:
 – Maximize \sum_{i \in S} v_i \text{ such that } \sum_{i \in S} w_i \leq K
Knapsack Recurrence

Subset Sum Recurrence:

$$\text{Opt}[j, K] = \max(\text{Opt}[j - 1, K], \text{Opt}[j - 1, K - w_j] + w_j)$$

Knapsack Recurrence:
Knapsack Grid

Opt[j, K] = max(Opt[j – 1, K], Opt[j – 1, K – w_j] + v_j)

Weights \{2, 4, 7, 10\} Values: \{3, 5, 9, 16\}
Dynamic Programming Examples

• Examples
 – Optimal Billboard Placement
 • Text, Solved Exercise, Pg 307
 – Linebreaking with hyphenation
 • Compare with HW problem 6, Pg 317
 – String approximation
 • Text, Solved Exercise, Page 309
Billboard Placement

- Maximize income in placing billboards
 - \(b_i = (p_i, v_i) \), \(v_i \): value of placing billboard at position \(p_i \)

- Constraint:
 - At most one billboard every five miles

- Example
 - \{ (6,5), (8,6), (12, 5), (14, 1) \}
Design a Dynamic Programming Algorithm for Billboard Placement

- Compute $\text{Opt}[1], \text{Opt}[2], \ldots, \text{Opt}[n]$
- What is $\text{Opt}[k]$?

Input b_1, \ldots, b_n, where $b_i = (p_i, v_i)$, position and value of billboard i
Opt[k] = fun(Opt[0],...,Opt[k-1])

• How is the solution determined from sub problems?

Input $b_1, ..., b_n$, where $b_i = (p_i, v_i)$, position and value of billboard i
Solution

j = 0; // j is five miles behind the current position
 // the last valid location for a billboard, if one placed at P[k]
for k := 1 to n

 while (P[j] < P[k] - 5)
 j := j + 1;
 j := j - 1;

 Opt[k] = Max(Opt[k-1], V[k] + Opt[j]);