Dynamic Programming

• Weighted Interval Scheduling

Given a collection of intervals I_1, \ldots, I_n with weights w_1, \ldots, w_n, choose a maximum weight set of non-overlapping intervals

```
1  2  3  4  5  6  7
```

Optimality Condition

• $\text{Opt}[j]$ is the maximum weight independent set of intervals I_1, I_2, \ldots, I_j
• $\text{Opt}[j] = \max(\text{Opt}[j - 1], w_j + \text{Opt}[p[j]])$
 – Where $p[j]$ is the index of the last interval which finishes before I_j starts

Algorithm

```
MaxValue(j) =
  if j = 0 return 0
  else if $M[j] \neq -1$ return $M[j];$
  else
    $M[j] = \max(\text{MaxValue}(j-1), w_j + \text{MaxValue}(p[j]));$
    return $M[j];$
```

Worst case run time: 2^n

A better algorithm

$M[j]$ initialized to -1 before the first recursive call for all j

```
MaxValue(j) =
  if j = 0 return 0;
  else if $M[j] \neq -1$ return $M[j];$
  else
    $M[j] = \max(\text{MaxValue}(j-1), w_j + \text{MaxValue}(p[j]));$
    return $M[j];$
```

Iterative Algorithm

Express the MaxValue algorithm as an iterative algorithm

```
MaxValue {
}
```
Fill in the array with the Opt values

\[\text{Opt}[j] = \max(\text{Opt}[j-1], w_j + \text{Opt}[p[j]]) \]

Computing the solution

\[\text{Opt}[j] = \max(\text{Opt}[j-1], w_j + \text{Opt}[p[j]]) \]

Dynamic Programming

- The most important algorithmic technique covered in CSE 421
- Key ideas
 - Express solution in terms of a polynomial number of sub problems
 - Order sub problems to avoid recomputation

Optimal linear interpolation

Error = \[\sum (y_i - ax_i - b)^2 \]

What is the optimal linear interpolation with three line segments

What is the optimal linear interpolation with two line segments
What is the optimal linear interpolation with n line segments

Notation

- Points p_1, p_2, \ldots, p_n ordered by x-coordinate ($p_i = (x_i, y_i)$)
- E_{ij} is the least squares error for the optimal line interpolating p_i, \ldots, p_j

Optimal interpolation with two segments

- Give an equation for the optimal interpolation of p_1, \ldots, p_n with two line segments
- E_{ij} is the least squares error for the optimal line interpolating p_i, \ldots, p_j

Optimal interpolation with k segments

- Optimal segmentation with three segments
 - $\min_{i,j} \{E_{1i} + E_{ij} + E_{jn}\}$
 - $O(n^2)$ combinations considered
- Generalization to k segments leads to considering $O(n^{k-1})$ combinations

Optimal sub-solution property

$\text{Opt}_k[j]$: Minimum error approximating p_1, \ldots, p_j with k segments

How do you express $\text{Opt}_k[j]$ in terms of $\text{Opt}_{k-1}[1], \ldots, \text{Opt}_{k-1}[j]$?
Optimal multi-segment interpolation

Compute \(\text{Opt}[k, j] \) for \(0 < k < j < n \)

\[
\begin{align*}
\text{for } j & := 1 \text{ to } n \\
\text{Opt}[1, j] & := E_{1,j}; \\
\text{for } k & := 2 \text{ to } n-1 \\
\text{for } j & := 2 \text{ to } n \\
& \quad \text{for } i := 1 \text{ to } j - 1 \\
& \quad \quad t := E_{i,j} \\
& \quad \quad \text{for } i := 1 \text{ to } j - 1 \\
& \quad \quad t = \min (t, \text{Opt}[k-1, i] + E_{i,j}) \quad (19) \\
\text{Opt}[k, j] & = t
\end{align*}
\]

Determining the solution

- When \(\text{Opt}[k,j] \) is computed, record the value of \(i \) that minimized the sum
- Store this value in an auxiliary array
- Use to reconstruct solution

Variable number of segments

- Segments not specified in advance
- Penalty function associated with segments
- Cost = Interpolation error + \(C \times \#\text{Segments} \)

Penalty cost measure

- \(\text{Opt}[j] = \min(E_{1,j}, \min_i (\text{Opt}[i] + E_{ij} + P)) \)