

Announcements

- Midterm returned with solution set
- Next week, Dynamic Programming
- Chapter 6

Divide and Conquer Algorithms

- Mergesort, Quicksort
- Strassen's Algorithm
- Inversion counting
- Median
- Closest Pair Algorithm (2d)
- Integer Multiplication (Karatsuba's Algorithm)
- FFT
- Polynomial Multiplication
- Convolution

Median: BFPRT Algorithm

Select $(A, k)\{$
$\mathrm{x}=\mathrm{BFPRT}(\mathrm{A})$
$S_{1}=\{y$ in $A \mid y<x\} ; S_{2}=\{y$ in $A \mid y>x\} ; S_{3}=\{y$ in $A \mid y=x\}$ if $\left(\left|S_{2}\right|>=k\right)$
return Select($\mathrm{S}_{2}, \mathrm{k}$)
else if $\left(\left|S_{2}\right|+\left|S_{3}\right|>=k\right)$
else
return x
$\}$
return $\operatorname{Select}\left(\mathrm{S}_{1}, \mathrm{k}-\left|\mathrm{S}_{2}\right|-\left|\mathrm{S}_{3}\right|\right)$

S_{1}	$\mathrm{~S}_{3}$	$\mathrm{~S}_{2}$

BFPRT(A)\{
Split A into $n / 5$ sets of size 5
M be the set of medians of these sets
$x=\operatorname{Select}(M, n / 10) \quad / * x$ is the median of M */
return x
\}

BFPRT Recurrence

$T(n)<=T(3 n / 4)+T(n / 5)+c n$

Median

- In practice, select the pivot by choosing an element at random
- Heuristics such as median-of-three gives improved performance
- BFPRT is NOT a practical algorithm
- Why groups of five?
- Odd number
- Three does not allow linear bound to be proven
- Seven gives a worse constant factor

Closest Pair Problem (2D)

- Given a set of points find the pair of points p, q that minimizes $\operatorname{dist}(p, q)$

Packing Lemma
Suppose that the minimum distance between points is at least δ, what is the maximum number of points that can be packed in a ball of radius δ ?

Suppose that the minimum distance between points is at least δ, what is the maximum number of points that can be packed in a ball of radius δ ?

Divide and conquer

- If we solve the problem on two subsets, does it help? (Separate by median x coordinate)

Combining Solutions

- Suppose the minimum separation from the sub problems is δ
- In looking for cross set closest pairs, we only need to consider points with δ of the boundary
- How many cross border interactions do we need to test?

Details

- Preprocessing: sort points by y
- Merge step
- Select points in boundary zone
- For each point in the boundary
- Find highest point on the other side that is at most δ above
- Find lowest point on the other side that is at most δ below
- Compare with the points in this interval (there are at most 6)

Integer Arithmetic

Runtime for standard algorithm to add two n digit numbers:

2095067093034680994318596846868779409766717133476767930 X 5920175091777634709677679342929097012308956679993010921

Runtime for standard algorithm to multiply two n digit numbers:

Algorithm run time

- After preprocessing:
$-T(n)=c n+2 T(n / 2)$

Recursive Multiplication Algorithm

 (First attempt)$$
\begin{aligned}
x & =x_{1} 2^{n / 2}+x_{0} \\
y & =y_{1} 2^{n / 2}+y_{0} \\
x y & =\left(x_{1} 2^{n / 2}+x_{0}\right)\left(y_{1} 2^{n / 2}+y_{0}\right) \\
& =x_{1} y_{1} 2^{n}+\left(x_{1} y_{0}+x_{0} y_{1}\right) 2^{n / 2}+x_{0} y_{0}
\end{aligned}
$$

Recurrence:
Run time:

Simple algebra
$x=x_{1} 2^{n / 2}+x_{0}$
$y=y_{1} 2^{n / 2}+y_{0}$
$x y=x_{1} y_{1} 2^{n}+\left(x_{1} y_{0}+x_{0} y_{1}\right) 2^{n / 2}+x_{0} y_{0}$
$p=\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)=x_{1} y_{1}+x_{1} y_{0}+x_{0} y_{1}+x_{0} y_{0}$

Karatsuba's Algorithm

Multiply n-digit integers x and y
Let $x=x_{1} 2^{n / 2}+x_{0}$ and $y=y_{1} 2^{n / 2}+y_{0}$
Recursively compute

$$
a=x_{1} y_{1}
$$

$$
\mathrm{b}=\mathrm{x}_{0} \mathrm{y}_{0}
$$

$$
p=\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)
$$

Return $a 2^{n}+(p-a-b) 2^{n / 2}+b$

Recurrence: $T(n)=3 T(n / 2)+c n$

[^0]| Next week |
| :---: |
| |
| |
| |
| |

[^0]: $\log _{2} 3=1.58496250073 \ldots$

