CSE 421 Algorithms

Lecture 15, Winter 2019 Closest Pair, Multiplication

Announcements

- · Midterm returned with solution set
- Next week, Dynamic Programming - Chapter 6

Divide and Conquer Algorithms

- · Mergesort, Quicksort
- · Strassen's Algorithm
- Inversion counting
- Median
- Closest Pair Algorithm (2d)
- Integer Multiplication (Karatsuba's Algorithm)
- FFT
 - Polynomial Multiplication
 - Convolution

BFPRT Recurrence

 $T(n) \le T(3n/4) + T(n/5) + c n$

Prove that T(n) <= 20 c n

- Suppose the minimum separation from the sub problems is $\boldsymbol{\delta}$
- In looking for cross set closest pairs, we only need to consider points with δ of the boundary
- How many cross border interactions do we need to test?

Algorithm run time

After preprocessing:
T(n) = cn + 2 T(n/2)

Recursive Multiplication Algorithm (First attempt)

 $\begin{aligned} x &= x_1 2^{n/2} + x_0 \\ y &= y_1 2^{n/2} + y_0 \\ xy &= (x_1 2^{n/2} + x_0) (y_1 2^{n/2} + y_0) \\ &= x_1 y_1 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0 \end{aligned}$ Recurrence:

Run time:

Next week

• Dynamic Programming!