CSE 421
Algorithms

Lecture 15, Winter 2019
Closest Pair, Multiplication

Announcements

• Midterm returned with solution set
• Next week, Dynamic Programming
 – Chapter 6

Divide and Conquer Algorithms

• Mergesort, Quicksort
• Strassen’s Algorithm
• Inversion counting
• Median
• Closest Pair Algorithm (2d)
• Integer Multiplication (Karatsuba’s Algorithm)
• FFT
 – Polynomial Multiplication
 – Convolution

Median: BFPRT Algorithm

```plaintext
Select(A, k)
    x = BFPRT(A)
    S1 = {y \in A | y < x}; S2 = {y \in A | y > x}; S3 = {y \in A | y = x}
    if (|S2| >= k)
        return Select(S2, k)
    else if (|S2| + |S3| >= k)
        return x
    else
        return Select(S1, k - |S2| - |S3|)

BFPRT(A)
    n = |A|
    Split A into n/5 sets of size 5
    M be the set of medians of these sets
    x = Select(M, n/10)  /* x is the median of M */
    return x
```

BFPRT Recurrence

\[T(n) \leq T(3n/4) + T(n/5) + c \cdot n \]

Prove that \(T(n) \leq 20 \cdot c \cdot n \)

Median

• In practice, select the pivot by choosing an element at random
• Heuristics such as median-of-three gives improved performance
• BFPRT is NOT a practical algorithm
• Why groups of five?
 – Odd number
 – Three does not allow linear bound to be proven
 – Seven gives a worse constant factor
Closest Pair Problem (2D)

- Given a set of points find the pair of points \(p, q \) that minimizes \(\text{dist}(p, q) \)

Divide and conquer

- If we solve the problem on two subsets, does it help? (Separate by median x coordinate)

Packing Lemma

Suppose that the minimum distance between points is at least \(\delta \), what is the maximum number of points that can be packed in a ball of radius \(\delta \)?

Combining Solutions

- Suppose the minimum separation from the sub problems is \(\delta \)
- In looking for cross set closest pairs, we only need to consider points with \(\delta \) of the boundary
- How many cross border interactions do we need to test?

A packing lemma bounds the number of distances to check

Details

- Preprocessing: sort points by \(y \)
- Merge step
 - Select points in boundary zone
 - For each point in the boundary
 - Find highest point on the other side that is at most \(\delta \) above
 - Find lowest point on the other side that is at most \(\delta \) below
 - Compare with the points in this interval (there are at most 6)
Identify the pairs of points that are compared in the merge step following the recursive calls.

Algorithm run time
- After preprocessing:
 \[T(n) = cn + 2 T\left(\frac{n}{2}\right) \]

Integer Arithmetic

<table>
<thead>
<tr>
<th>Integer Arithmetic</th>
<th>9715480283945084383094856701043643845790217965702956767</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ 1242431097179869843092877957927759797717133476767930</td>
</tr>
<tr>
<td>X</td>
<td>592017590177763470677679342929097012308956679993010921</td>
</tr>
</tbody>
</table>

Recursive Multiplication Algorithm (First attempt)

\[\begin{align*}
 x &= x_1 2^{n/2} + x_0 \\
 y &= y_1 2^{n/2} + y_0 \\
 xy &= (x_1 2^{n/2} + x_0)(y_1 2^{n/2} + y_0) \\
 &= x_1 y_1 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0
\end{align*} \]

Recurrence:
Run time:

Simple algebra

\[\begin{align*}
 x &= x_1 2^{n/2} + x_0 \\
 y &= y_1 2^{n/2} + y_0 \\
 xy &= x_1 y_1 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0 \\
 p &= (x_1 + x_0)(y_1 + y_0) = x_1 y_1 + x_1 y_0 + x_0 y_1 + x_0 y_0
\end{align*} \]

Karatsuba’s Algorithm

Multiply n-digit integers x and y

Let \(x = x_1 2^{n/2} + x_0 \) and \(y = y_1 2^{n/2} + y_0 \)

Recursively compute

\[\begin{align*}
 a &= x_1 y_1 \\
 b &= x_0 y_0 \\
 p &= (x_1 + x_0)(y_1 + y_0)
\end{align*} \]

Return \(a2^n + (p - a - b)2^{n/2} + b \)

Recurrence: \(T(n) = 3T(n/2) + cn \)

\[\log_3 2 = 1.58496250073... \]
Next week

- Dynamic Programming!