
1

CSE 421

Algorithms

Lecture 15, Winter 2019

Closest Pair, Multiplication

Announcements

• Midterm returned with solution set

• Next week, Dynamic Programming

– Chapter 6

Midterm Average: 50.5

Divide and Conquer Algorithms

• Mergesort, Quicksort

• Strassen’s Algorithm

• Inversion counting

• Median

• Closest Pair Algorithm (2d)

• Integer Multiplication (Karatsuba’s Algorithm)

• FFT

– Polynomial Multiplication

– Convolution

Median: BFPRT Algorithm
Select(A, k){

x = BFPRT(A)

S1 = {y in A | y < x}; S2 = {y in A | y > x}; S3 = {y in A | y = x}

if (|S2| >= k)

return Select(S2, k)

else if (|S2| + |S3| >= k)

return x

else

return Select(S1, k - |S2| - |S3|)

}

S1 S3 S2

BFPRT(A){

n = |A|

Split A into n/5 sets of size 5

M be the set of medians of these sets

x = Select(M, n/10) /* x is the median of M */

return x

}

BFPRT Recurrence

Prove that T(n) <= 20 c n

T(n) <= T(3n/4) + T(n/5) + c n

Median

• In practice, select the pivot by choosing an
element at random

• Heuristics such as median-of-three gives
improved performance

• BFPRT is NOT a practical algorithm

• Why groups of five?

– Odd number

– Three does not allow linear bound to be proven

– Seven gives a worse constant factor

2

Closest Pair Problem (2D)

• Given a set of points find the pair of points

p, q that minimizes dist(p, q)

Divide and conquer

• If we solve the problem on two subsets,

does it help? (Separate by median x

coordinate)

d1 d2

Packing Lemma

Suppose that the minimum distance between

points is at least d, what is the maximum number of

points that can be packed in a ball of radius d?

Combining Solutions

• Suppose the minimum separation from the

sub problems is d

• In looking for cross set closest pairs, we

only need to consider points with d of the

boundary

• How many cross border interactions do we

need to test?

A packing lemma bounds the

number of distances to check

d

Details

• Preprocessing: sort points by y

• Merge step

– Select points in boundary zone

– For each point in the boundary
• Find highest point on the other side that is at most
d above

• Find lowest point on the other side that is at most d
below

• Compare with the points in this interval (there are
at most 6)

3

Identify the pairs of points that are compared

in the merge step following the recursive calls
Algorithm run time

• After preprocessing:

– T(n) = cn + 2 T(n/2)

Integer Arithmetic

9715480283945084383094856701043643845790217965702956767

+ 1242431098234099057329075097179898430928779579277597977

2095067093034680994318596846868779409766717133476767930

X 5920175091777634709677679342929097012308956679993010921

Runtime for standard algorithm to add two n digit numbers:

Runtime for standard algorithm to multiply two n digit numbers:

Recursive Multiplication Algorithm

(First attempt)

x = x1 2
n/2 + x0

y = y1 2
n/2 + y0

xy = (x1 2
n/2 + x0) (y1 2

n/2 + y0)

= x1y1 2n + (x1y0 + x0y1)2
n/2 + x0y0

Recurrence:

Run time:

Simple algebra

x = x1 2
n/2 + x0

y = y1 2
n/2 + y0

xy = x1y1 2n + (x1y0 + x0y1) 2
n/2 + x0y0

p = (x1 + x0)(y1 + y0) = x1y1 + x1y0 + x0y1 + x0y0

Karatsuba’s Algorithm

Multiply n-digit integers x and y

Let x = x1 2n/2 + x0 and y = y1 2n/2 + y0

Recursively compute

a = x1y1

b = x0y0

p = (x1 + x0)(y1 + y0)

Return a2n + (p – a – b)2n/2 + b

Recurrence: T(n) = 3T(n/2) + cn

log2 3 = 1.58496250073…

4

Next week

• Dynamic Programming!

