CSE 421
Algorithms
Richard Anderson
Lecture 14, Winter 2019
Divide and Conquer

What you really need to know about recurrences
• Work per level changes geometrically with the level
 • Geometrically increasing \(x > 1 \)
 – The bottom level wins
 • Geometrically decreasing \(x < 1 \)
 – The top level wins
 • Balanced \(x = 1 \)
 – Equal contribution

T(n) = aT(n/b) + nc
• Balanced: \(a = b^c \)
 – \(T(n) = 4T(n/2) + n^2 \)
• Increasing: \(a > b^c \)
 – \(T(n) = 9T(n/8) + n \)
 – \(T(n) = 3T(n/4) + n^{1/2} \)
• Decreasing: \(a < b^c \)
 – \(T(n) = 5T(n/8) + n \)
 – \(T(n) = 7T(n/2) + n^3 \)

Divide and Conquer Algorithms
• Split into sub problems
• Recursively solve the problem
• Combine solutions
• Make progress in the split and combine stages
 – Quicksort – progress made at the split step
 – Mergesort – progress made at the combine step
• D&C Algorithms
 – Strassen’s Algorithm – Matrix Multiplication
 – Inversions
 – Median
 – Closest Pair
 – Integer Multiplication
 – FFT

How to multiply 2 x 2 matrices with 7 multiplications

Multiply 2 x 2 Matrices:
\[
\begin{array}{cc|cc}
| r & s | & a & b | \\
| t & u | & c & d |
\end{array}
\]
\[
\begin{align*}
r &= p_1 + p_2 - p_4 + p_6 \\
s &= p_4 + p_5 \\
t &= p_6 + p_7 \\
u &= p_2 - p_3 + p_5 - p_7
\end{align*}
\]

Where:
\[
\begin{align*}
p_1 &= (b - d)(f + h) \\
p_2 &= (a + d)(e + h) \\
p_3 &= (a - c)(e + g) \\
p_4 &= (a + b)h \\
p_5 &= a(g - h) \\
p_6 &= d(f - e) \\
p_7 &= (c + d)e
\end{align*}
\]
Corrected version from AHU 1974
Strassen’s Algorithms

- Treat \(n \times n \) matrices as \(2 \times 2 \) matrices of \(n/2 \times n/2 \) submatrices
- Use Strassen’s trick to multiply \(2 \times 2 \) matrices with 7 multiplies
- Base case standard multiplication for single entries
- Recurrence: \(T(n) = 7T(n/2) + cn^2 \)
- Solution is \(O(7^{\log n}) = O(n^{\log 7}) \) which is about \(O(n^{2.807}) \)

Inversion Problem

- Let \(a_1, \ldots, a_n \) be a permutation of \(1 \ldots n \)
- \((a_i, a_j) \) is an inversion if \(i < j \) and \(a_i > a_j \)
- 4, 6, 1, 7, 3, 2, 5

- Problem: given a permutation, count the number of inversions
- This can be done easily in \(O(n^2) \) time
 - Can we do better?

Application

- Counting inversions can be used to measure how close ranked preferences are
 - People rank 20 movies, based on their rankings you cluster people who like that same type of movie

Counting Inversions

- Count inversions on lower half
- Count inversions on upper half
- Count the inversions between the halves

Count the Inversions

- Problem – how do we count inversions between sub problems in \(O(n) \) time?
 - Solution – Count inversions while merging

Problem – how do we count inversions between sub problems in \(O(n) \) time?

- Solution – Count inversions while merging

Standard merge algorithm – add to inversion count when an element is moved from the upper array to the solution
Use the merge algorithm to count inversions

<table>
<thead>
<tr>
<th>1</th>
<th>4</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>7</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>8</th>
<th>9</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>10</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

Indicate the number of inversions for each element detected when merging.

Inversions

- Counting inversions between two sorted lists
 - $O(1)$ per element to count inversions

<table>
<thead>
<tr>
<th>x</th>
<th>x</th>
<th>x</th>
<th>x</th>
<th>x</th>
<th>x</th>
<th>y</th>
<th>y</th>
<th>y</th>
<th>y</th>
<th>y</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
</tr>
</tbody>
</table>

- Algorithm summary
 - Satisfies the “Standard recurrence”
 - $T(n) = 2T(n/2) + cn$

Computing the Median

- Given n numbers, find the number of rank $n/2$
- One approach is sorting
 - Sort the elements, and choose the middle one
 - Can you do better?

Problem generalization

- Selection, given n numbers and an integer k, find the k-th largest

Select(A, k)

```java
Select(A, k){
    Choose element $x$ from A
    $S_1 = \{y \in A \mid y < x\}$
    $S_2 = \{y \in A \mid y > x\}$
    $S_3 = \{y \in A \mid y = x\}$
    if ($|S_2| \geq k$)
        return Select($S_2$, $k$)
    else if ($|S_1| + |S_2| \geq k$)
        return $x$
    else
        return Select($S_1$, $k - |S_2| - |S_3|$)
}
```

Randomized Selection

- Choose the element at random
- Analysis can show that the algorithm has expected run time $O(n)$
Deterministic Selection

- What is the run time of select if we can guarantee that choose finds an x such that $|S_1| < 3n/4$ and $|S_2| < 3n/4$ in $O(n)$ time

BFPRT Algorithm

- A very clever choose algorithm . . .

Split into $n/5$ sets of size 5
M be the set of medians of these sets
Let x be the median of M

BFPRT runtime

$|S_1| < 3n/4$, $|S_2| < 3n/4$

Split into $n/5$ sets of size 5
M be the set of medians of these sets
x be the median of M
Construct S_1 and S_2
Recursive call in S_1 or S_2

BFPRT Recurrence

- $T(n) \leq T(3n/4) + T(n/5) + cn$

Prove that $T(n) \leq 20cn$