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CSE 421

Algorithms

Richard Anderson

Lecture 13, Winter 2019

Recurrences, Part 2

Announcements

• Midterm

– Wednesday,  February 13, in class, closed 

book

– Through section 5.2

Recurrence Examples

• T(n) = 2 T(n/2) + cn

– O(n log n)

• T(n) = T(n/2) + cn

– O(n)

• More useful facts:

– logkn = log2n / log2k

– k log n = n log k

Unrolling the recurrence

Recursive Matrix Multiplication

Multiply 2 x 2 Matrices:

| r    s |    | a    b|   |e    g|

| t    u |    | c    d|   | f    h|

r = ae + bf

s = ag + bh

t =  ce + df

u = cg + dh

A N x N matrix can be viewed as 

a 2 x 2 matrix with entries that 

are (N/2) x (N/2) matrices. 

The recursive matrix 

multiplication algorithm 

recursively multiplies the       

(N/2) x (N/2) matrices and 

combines them using the 

equations for multiplying 2 x 2 

matrices

=

Recursive Matrix Multiplication

• How many recursive calls 

are made at each level?

• How much work in 

combining the results?

• What is the recurrence?
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What is the run time for the recursive 

Matrix Multiplication Algorithm?

• Recurrence:

T(n) = 4T(n/2) + n
Total Work

n/4n/4 n/4 n/4 n/4n/4 n/4 n/4 n/4n/4 n/4 n/4n/4n/4 n/4 n/4

n/2 n/2 n/2 n/2

n

T(n) = 2T(n/2) + n2 T(n) = 2T(n/2) + n1/2

Recurrences

• Three basic behaviors

– Dominated by initial case

– Dominated by base case

– All cases equal – we care about the depth

What you really need to know 

about recurrences

• Work per level changes geometrically with 

the level

• Geometrically increasing (x > 1)

– The bottom level wins

• Geometrically decreasing  (x < 1)

– The top level wins

• Balanced (x = 1)

– Equal contribution
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Classify the following recurrences

(Increasing, Decreasing, Balanced)

• T(n) = n + 5T(n/8)

• T(n) = n + 9T(n/8)

• T(n) = n2 + 4T(n/2)

• T(n) = n3 + 7T(n/2)

• T(n) = n1/2 + 3T(n/4)

Strassen’s Algorithm

Multiply 2 x 2 Matrices:

| r    s |    | a    b|   |e    g|

| t     u|    | c    d|   | f    h|

r = p1 + p4 – p5 + p7

s = p3 + p5

t = p2 + p5

u = p1 + p3 – p2 + p7

Where:

p1 = (b + d)(f + g)

p2= (c + d)e

p3= a(g – h)

p4= d(f – e)

p5= (a – b)h

p6= (c – d)(e + g)

p7= (b – d)(f + h)

=

Recurrence for Strassen’s 

Algorithms

• T(n) = 7 T(n/2) + cn2

• What is the runtime?

BFPRT Recurrence

What bound do you expect?

T(n) <= T(3n/4) + T(n/5) + 20 n


