CSE 421 Algorithms

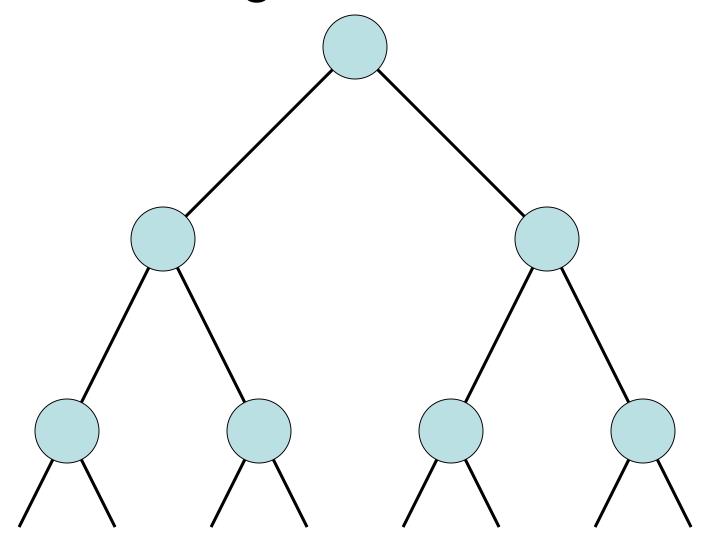
Richard Anderson
Lecture 13, Winter 2019
Recurrences, Part 2

Announcements

- Midterm
 - Wednesday, February 13, in class, closed book
 - Through section 5.2

Recurrence Examples

- T(n) = 2 T(n/2) + cn- O(n log n)
- T(n) = T(n/2) + cn- O(n)


More useful facts:

$$-\log_k n = \log_2 n / \log_2 k$$

$$-k^{\log n} = n^{\log k}$$

$$\sum_{i=0}^{n} x^{i} = \frac{1 - x^{n+1}}{1 - x}$$

Unrolling the recurrence

Recursive Matrix Multiplication

Multiply 2 x 2 Matrices:

$$r = ae + bf$$

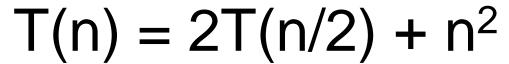
 $s = ag + bh$
 $t = ce + df$
 $u = cg + dh$

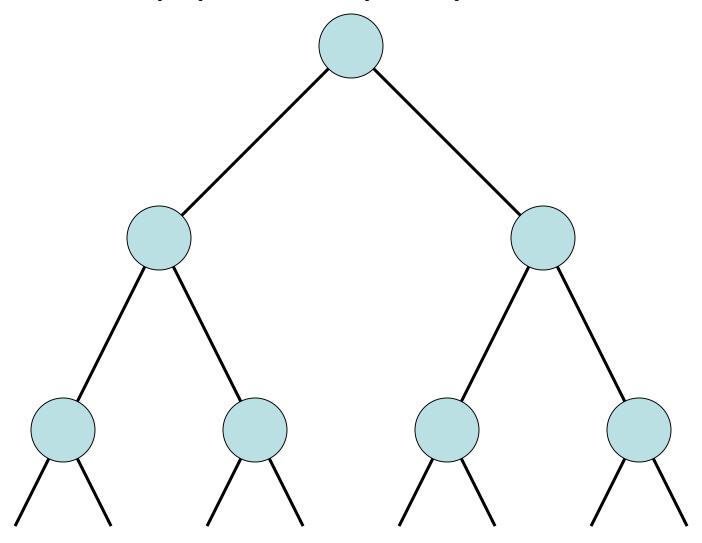
A N x N matrix can be viewed as a 2 x 2 matrix with entries that are (N/2) x (N/2) matrices.

The recursive matrix multiplication algorithm recursively multiplies the (N/2) x (N/2) matrices and combines them using the equations for multiplying 2 x 2 matrices

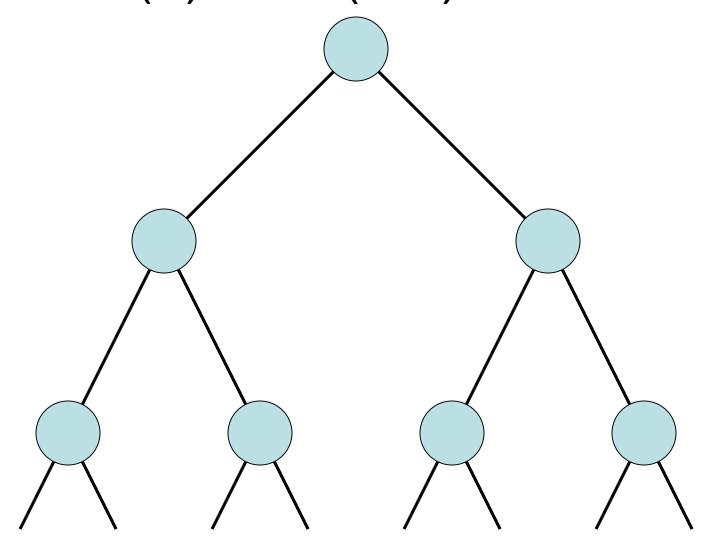
Recursive Matrix Multiplication

 How many recursive calls are made at each level?


 How much work in combining the results?


What is the recurrence?

What is the run time for the recursive Matrix Multiplication Algorithm?


• Recurrence:

Total Work T(n) = 4T(n/2) + n $\log n$ $\sum_{k=1}^{\infty} 2^k n = (2n-1)n$ k=0n n/2 n/2 n/2 n/2 n/4 n/4

$T(n) = 2T(n/2) + n^{1/2}$

Recurrences

- Three basic behaviors
 - Dominated by initial case
 - Dominated by base case
 - All cases equal we care about the depth

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing (x > 1)
 - The bottom level wins
- Geometrically decreasing (x < 1)
 - The top level wins
- Balanced (x = 1)
 - Equal contribution

Classify the following recurrences (Increasing, Decreasing, Balanced)

- T(n) = n + 5T(n/8)
- T(n) = n + 9T(n/8)
- $T(n) = n^2 + 4T(n/2)$
- $T(n) = n^3 + 7T(n/2)$
- $T(n) = n^{1/2} + 3T(n/4)$

Strassen's Algorithm

Multiply 2 x 2 Matrices:

$$\begin{vmatrix} r & s \end{vmatrix} = \begin{vmatrix} a & b \end{vmatrix} \begin{vmatrix} e & g \end{vmatrix}$$

 $\begin{vmatrix} t & u \end{vmatrix} = \begin{vmatrix} c & d \end{vmatrix} \begin{vmatrix} f & h \end{vmatrix}$

$$r = p_1 + p_4 - p_5 + p_7$$

$$s = p_3 + p_5$$

$$t = p_2 + p_5$$

$$u = p_1 + p_3 - p_2 + p_7$$

Where:

$$p_1 = (b + d)(f + g)$$

$$p_2 = (c + d)e$$

$$p_3 = a(g - h)$$

$$p_4 = d(f - e)$$

$$p_5 = (a - b)h$$

$$p_6 = (c - d)(e + g)$$

$$p_7 = (b - d)(f + h)$$

Recurrence for Strassen's Algorithms

- $T(n) = 7 T(n/2) + cn^2$
- What is the runtime?

BFPRT Recurrence

$$T(n) \le T(3n/4) + T(n/5) + 20 n$$