

Divide and Conquer

- Recurrences, Sections 5.1 and 5.2
- Algorithms
- Fast Matrix Multiplication
- Counting Inversions (5.3)
- Closest Pair (5.4)
- Multiplication (5.5)

Algorithm Analysis
- Cost of Merge
- Cost of Mergesort

Recurrence Analysis

- Solution methods
- Unrolling recurrence
- Guess and verify
- Plugging in to a "Master Theorem"

Substitution

Prove $T(n)<=c n\left(\log _{2} n+1\right)$ for $n>=1$
Induction:
Base Case:

Induction Hypothesis:

Unrolling the recurrence

Substitution
Prove $\mathrm{T}(\mathrm{n})<=\mathrm{cn}\left(\log _{2} \mathrm{n}+1\right)$ for $\mathrm{n}>=1$
Induction:
Base Case:
Induction Hypothesis:

A better mergesort (?)

- Divide into 3 subarrays and recursively sort
- Apply 3-way merge

Unroll recurrence for
$T(n)=3 T(n / 3)+d n$

$T(n)=a T(n / b)+f(n)$

$$
T(n)=T(n / 2)+c n
$$

Where does this recurrence arise?

Solving the recurrence exactly

$\mathrm{T}(\mathrm{n})=4 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}$

$$
T(n)=2 T(n / 2)+n^{2}
$$

$$
T(n)=2 T(n / 2)+n^{1 / 2}
$$

Recurrences

- Three basic behaviors
- Dominated by initial case
- Dominated by base case
- All cases equal - we care about the depth

