Interval Scheduling

- What is the expected size of the maximum independent set for random intervals
- What is the expected size of the maximum intersection for random intervals

Method 1: Each interval assigned a random start position and random length from $[0,1]$

Method 2: Random permutation of interval endpoints
Independent Set

Maximum independent set only contains small intervals
Maximum Intersection

- Maximum intersection is at the middle
Minimum Spanning Tree

Undirected Graph $G=(V,E)$ with edge weights

For simplicity, assume all edge costs are distinct
Greedy Algorithms for Minimum Spanning Tree

- [Prim] Extend a tree by including the cheapest outgoing edge
- [Kruskal] Add the cheapest edge that joins disjoint components
- [ReverseDelete] Delete the most expensive edge that does not disconnect the graph
Edge inclusion lemma

• Let S be a subset of V, and suppose $e = (u, v)$ is the minimum cost edge of E, with u in S and v in $V - S$

• e is in every minimum spanning tree of G
 – Or equivalently, if e is not in T, then T is not a minimum spanning tree
Proof

- Suppose T is a spanning tree that does not contain e.
- Add e to T, this creates a cycle.
- The cycle must have some edge $e_1 = (u_1, v_1)$ with u_1 in S and v_1 in V-S.

$$T_1 = T - \{e_1\} + \{e\}$$ is a spanning tree with lower cost.
- Hence, T is not a minimum spanning tree.

e is the minimum cost edge between S and V-S
Optimality Proofs

• Prim’s Algorithm computes a MST
• Kruskal’s Algorithm computes a MST

• Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V-S for some set S.
Prim’s Algorithm

S = { }; T = { };
while S != V
 choose the minimum cost edge
 e = (u,v), with u in S, and v in V-S
 add e to T
 add v to S
Prove Prim’s algorithm computes an MST

• Show an edge e is in the MST when it is added to T
Kruskal’s Algorithm

Let \(C = \{\{v_1\}, \{v_2\}, \ldots, \{v_n\}\}; \ T = \{\} \)

while \(|C| > 1\)

Let \(e = (u, v) \) with \(u \) in \(C_i \) and \(v \) in \(C_j \) be the minimum cost edge joining distinct sets in \(C \)

Replace \(C_i \) and \(C_j \) by \(C_i \cup C_j \)

Add \(e \) to \(T \)
Prove Kruskal’s algorithm computes an MST

• Show an edge \(e \) is in the MST when it is added to \(T \)
Reverse-Delete Algorithm

• Lemma: The most expensive edge on a cycle is never in a minimum spanning tree.
Reverse-Delete Algorithm

- Let e be the max cost edge whose removal does not disconnect the graph.
- Let T be a spanning tree of $G=(V, E - \{e\})$.

Dealing with the assumption of no equal weight edges

• Force the edge weights to be distinct
 – Add small quantities to the weights
 – Give a tie breaking rule for equal weight edges
Application: Clustering

• Given a collection of points in an r-dimensional space, and an integer K, divide the points into K sets that are closest together
Distance clustering

• Divide the data set into K subsets to maximize the distance between any pair of sets
 $\text{dist} (S_1, S_2) = \min \{\text{dist}(x, y) \mid x \in S_1, y \in S_2\}$
Divide into 2 clusters
Divide into 3 clusters
Divide into 4 clusters
Distance Clustering Algorithm

Let \(C = \{\{v_1\}, \{v_2\}, \ldots, \{v_n\}\}; \ T = \{ \} \)

while \(|C| > K \)

Let \(e = (u, v) \) with \(u \) in \(C_i \) and \(v \) in \(C_j \) be the minimum cost edge joining distinct sets in \(C \)

Replace \(C_i \) and \(C_j \) by \(C_i \cup C_j \)
K-clustering
Shortest paths in directed graphs vs undirected graphs
What about the minimum spanning tree of a directed graph?

- Must specify the root r
- Branching: Out tree with root r

Assume all vertices reachable from r

Also called an arborescence
Finding a minimum branching
Finding a minimum branching

- Remove all edges going into \(r \)
- Normalize the edge weights, so the minimum weight edge coming into each vertex has weight zero

This does not change the edges of the minimum branching
Finding a minimum branching

- Consider the graph that consists of the minimum cost edge coming in to each vertex
 - If this graph is a branching, then it is the minimum cost branching
 - Otherwise, the graph contains one or more cycles
 - Collapse the cycles in the original graph to super vertices
 - Reweight the graph and repeat the process
Finding a minimum branching
Correctness Proof

Lemma 4.38 Let C be a cycle in G consisting of edges of cost 0 with r not in C. There is an optimal branching rooted at r that has exactly one edge entering C.

• The lemma justifies using the edges of the cycle in the branching
• An induction argument is used to cover the multiple levels of compressing cycles