CSE 421 Algorithms

Winter 2019 Lecture 11 Minimum Spanning Trees (Part II)

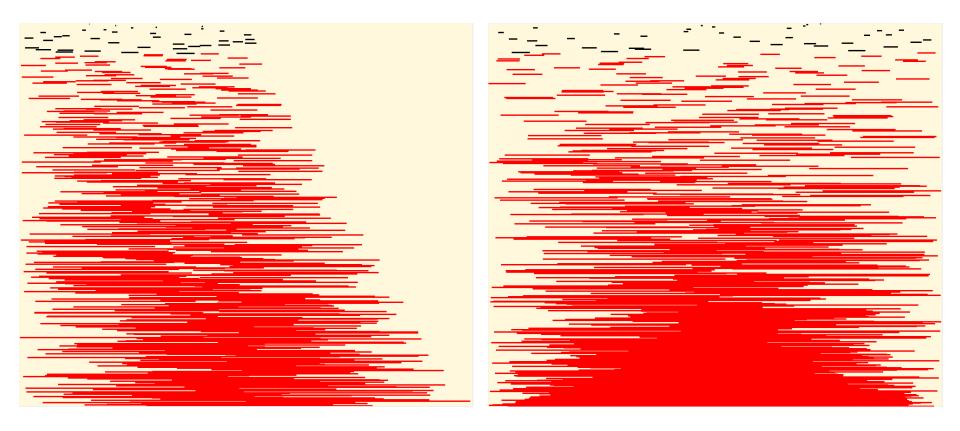
Interval Scheduling

- What is the expected size of the maximum independent set for random intervals
- What is the expected size of the maximum intersection for random intervals

Method 1: Each interval assigned a random start position and random length from [0,1] Method 2: Random permutation of interval endpoints

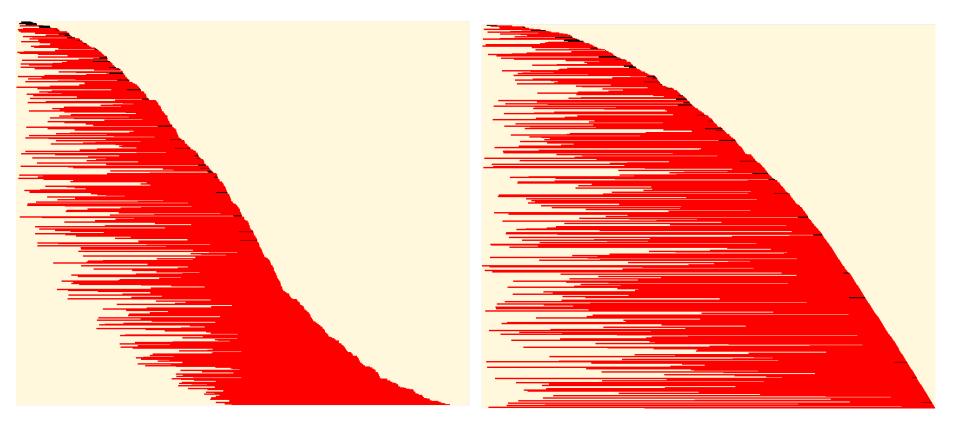
Independent Set

Maximum independent set only contains small intervals



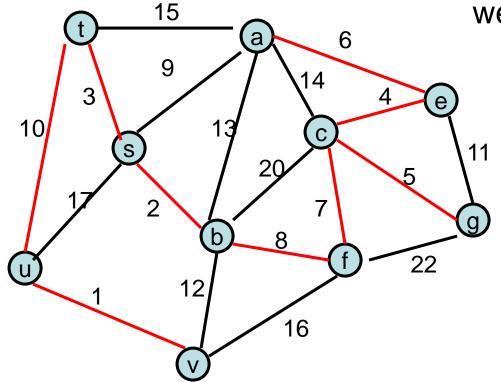
Maximum Intersection

• Maximum intersection is at the middle



Minimum Spanning Tree

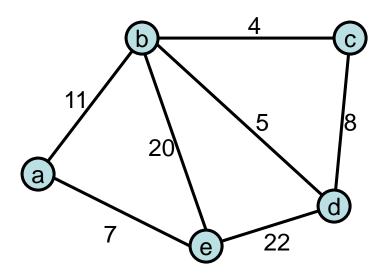
Undirected Graph G=(V,E) with edge weights



For simplicity, assume all edge costs are distinct

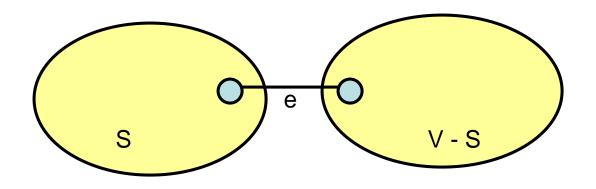
Greedy Algorithms for Minimum Spanning Tree

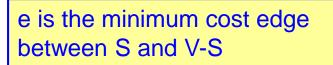
- [Prim] Extend a tree by including the cheapest out going edge
- [Kruskal] Add the cheapest edge that joins disjoint components
- [ReverseDelete] Delete the most expensive edge that does not disconnect the graph



Edge inclusion lemma

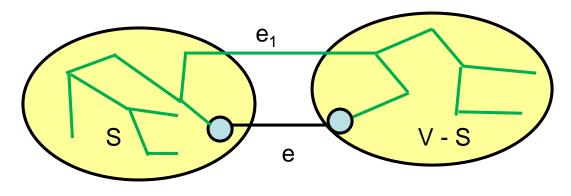
- Let S be a subset of V, and suppose e = (u, v) is the minimum cost edge of E, with u in S and v in V-S
- e is in every minimum spanning tree of G
 Or equivalently, if e is not in T, then T is not a minimum spanning tree





Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge e₁ = (u₁, v₁) with u₁ in S and v₁ in V-S



- $T_1 = T \{e_1\} + \{e\}$ is a spanning tree with lower cost
- Hence, T is not a minimum spanning tree

Optimality Proofs

- Prim's Algorithm computes a MST
- Kruskal's Algorithm computes a MST

 Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V-S for some set S.

Prim's Algorithm

choose the minimum cost edge e = (u,v), with u in S, and v in V-S add e to T add v to S

Prove Prim's algorithm computes an MST

 Show an edge e is in the MST when it is added to T

Kruskal's Algorithm

```
Let C = \{\{v_1\}, \{v_2\}, \dots, \{v_n\}\}; T = \{\}
while |C| > 1
```

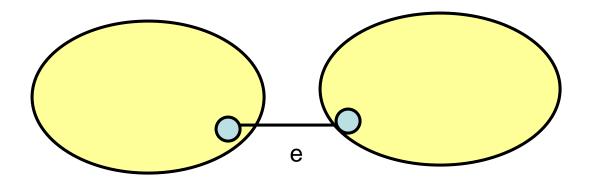
Let e = (u, v) with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C Replace C_i and C_j by $C_i U C_j$ Add e to T

Prove Kruskal's algorithm computes an MST

 Show an edge e is in the MST when it is added to T

Reverse-Delete Algorithm

• Lemma: The most expensive edge on a cycle is never in a minimum spanning tree



Reverse-Delete Algorithm

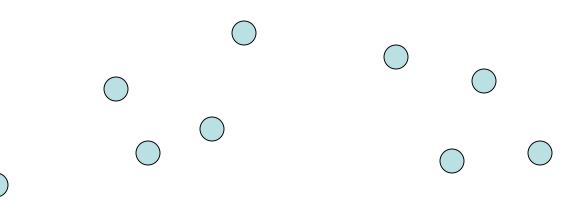
- Let e be the max cost edge whose removal does not disconnect the graph
- Let T be a spanning tree of G=(V, E {e})

Dealing with the assumption of no equal weight edges

- Force the edge weights to be distinct
 - Add small quantities to the weights
 - Give a tie breaking rule for equal weight edges

Application: Clustering

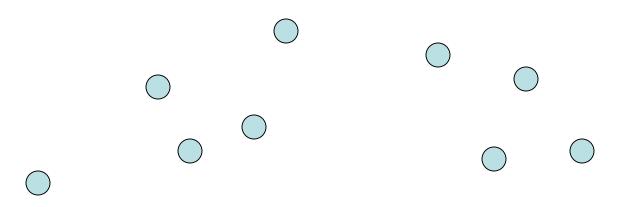
 Given a collection of points in an rdimensional space, and an integer K, divide the points into K sets that are closest together



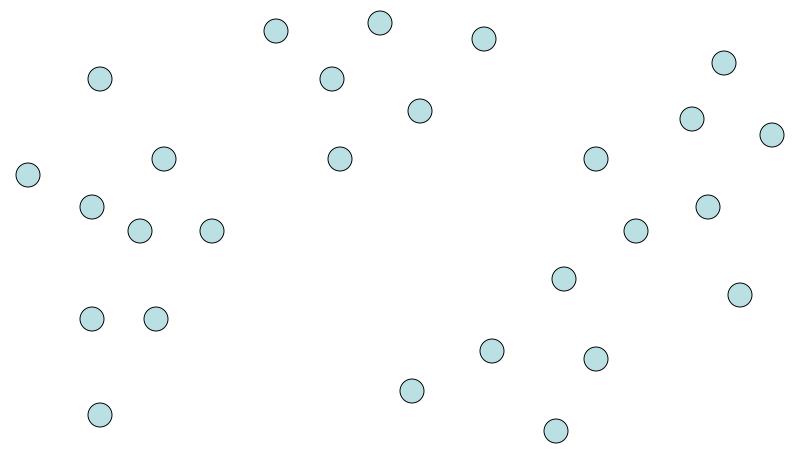
Distance clustering

 Divide the data set into K subsets to maximize the distance between any pair of sets

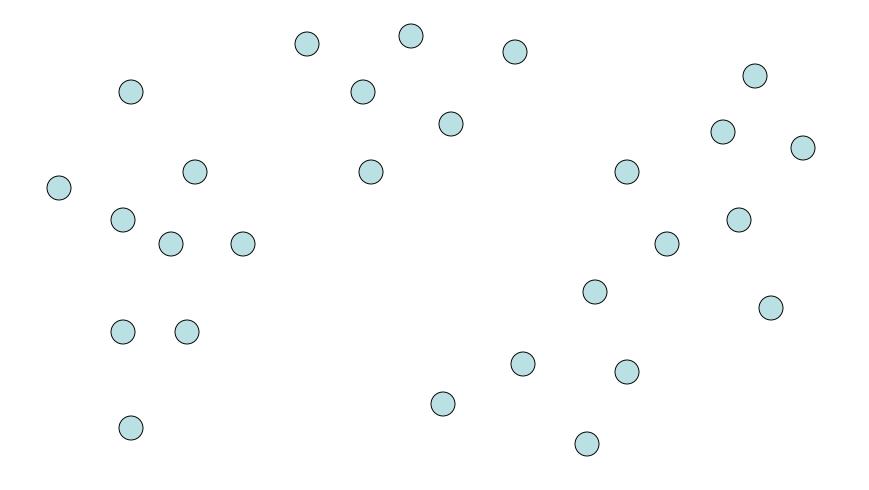
- dist (S₁, S₂) = min {dist(x, y) | x in S₁, y in S₂}



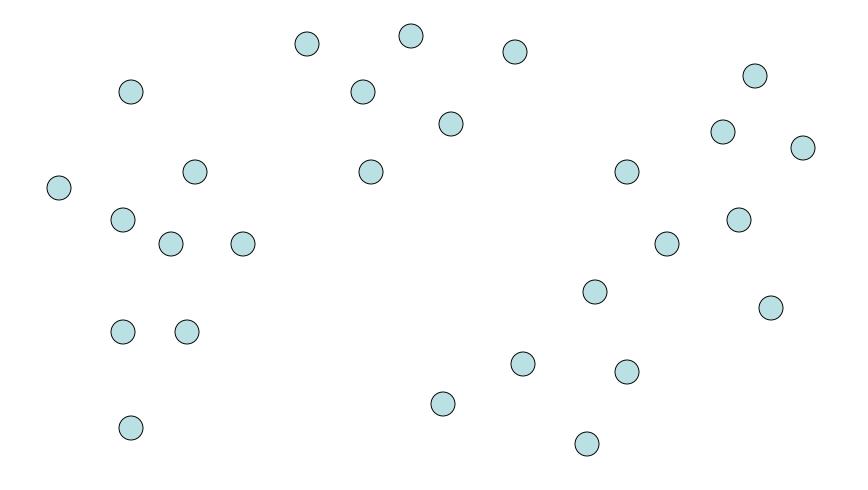
Divide into 2 clusters



Divide into 3 clusters



Divide into 4 clusters

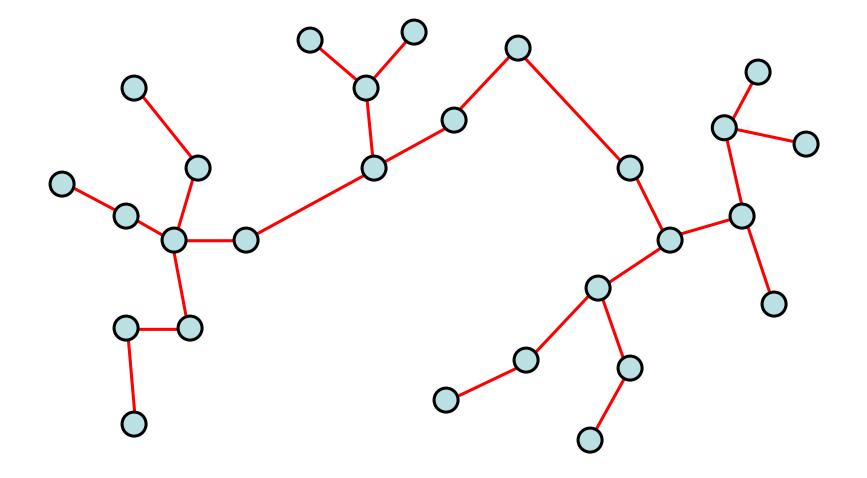


Distance Clustering Algorithm

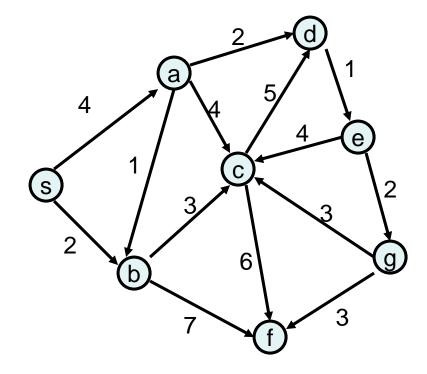
```
Let C = \{\{v_1\}, \{v_2\}, \dots, \{v_n\}\}; T = \{\}
while |C| > K
```

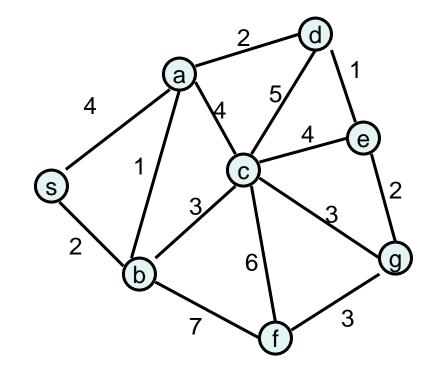
Let e = (u, v) with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C Replace C_i and C_j by $C_i U C_j$

K-clustering



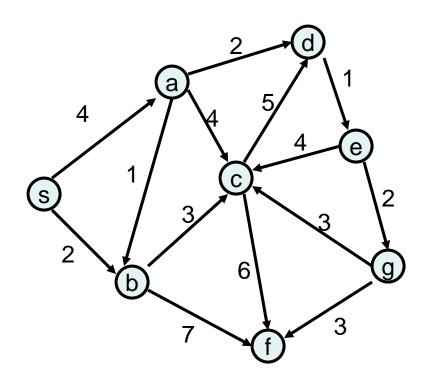
Shortest paths in directed graphs vs undirected graphs

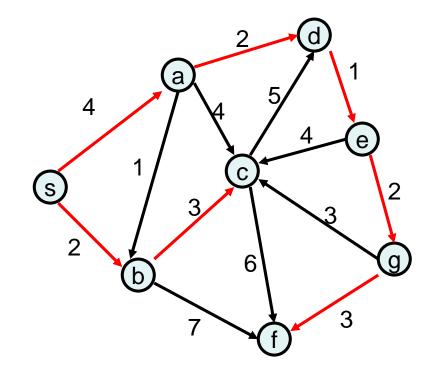




What about the minimum spanning tree of a directed graph?

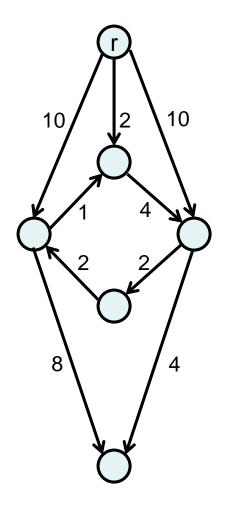
- Must specify the root r
- Branching: Out tree with root r

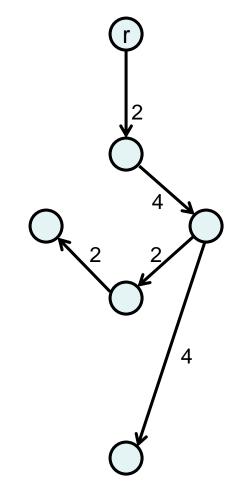




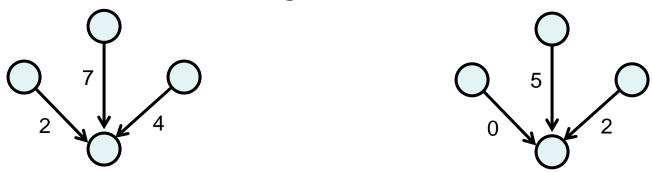
Assume all vertices reachable from r

Also called an arborescence



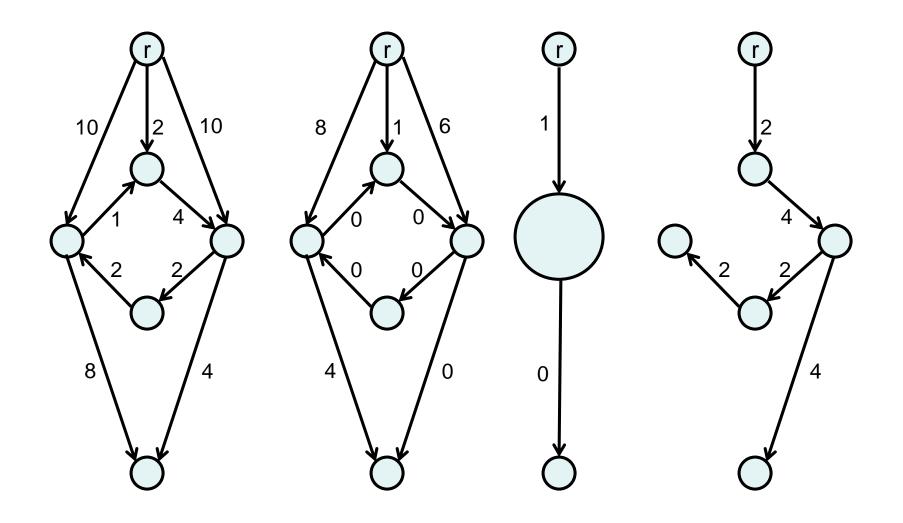


- Remove all edges going into r
- Normalize the edge weights, so the minimum weight edge coming into each vertex has weight zero



This does not change the edges of the minimum branching

- Consider the graph that consists of the minimum cost edge coming in to each vertex
 - If this graph is a branching, then it is the minimum cost branching
 - Otherwise, the graph contains one or more cycles
 - Collapse the cycles in the original graph to super vertices
 - Reweight the graph and repeat the process



Correctness Proof

Lemma 4.38 Let C be a cycle in G consisting of edges of cost 0 with r not in C. There is an optimal branching rooted at r that has exactly one edge entering C.

- The lemma justifies using the edges of the cycle in the branching
- An induction argument is used to cover the multiple levels of compressing cycles

