
CSE 421

Algorithms

Winter 2019

Lecture 11

Minimum Spanning Trees (Part II)

Interval Scheduling

• What is the expected size of the maximum

independent set for random intervals

• What is the expected size of the maximum

intersection for random intervals

Method 1: Each interval assigned

a random start position and

random length from [0,1]

Method 2: Random permutation of

interval endpoints

Independent Set

Maximum independent set only contains

small intervals

Maximum Intersection

• Maximum intersection is at the middle

Minimum Spanning Tree

a

b

c
s

e

g

f

9

2

13

6

4

11
5

7

20

14

t

u

v

15

10

1

8

12

16

22

17

3

Undirected Graph

G=(V,E) with edge

weights

For simplicity, assume all edge costs are distinct

Greedy Algorithms for Minimum

Spanning Tree

• [Prim] Extend a tree by

including the cheapest

out going edge

• [Kruskal] Add the

cheapest edge that joins

disjoint components

• [ReverseDelete] Delete

the most expensive edge

that does not disconnect

the graph

4

85

7

20

11

22

a

b c

d

e

Edge inclusion lemma

• Let S be a subset of V, and suppose e =

(u, v) is the minimum cost edge of E, with

u in S and v in V-S

• e is in every minimum spanning tree of G

– Or equivalently, if e is not in T, then T is not a

minimum spanning tree

S V - S

e

Proof

• Suppose T is a spanning tree that does not contain e

• Add e to T, this creates a cycle

• The cycle must have some edge e1 = (u1, v1) with u1 in S
and v1 in V-S

• T1 = T – {e1} + {e} is a spanning tree with lower cost

• Hence, T is not a minimum spanning tree

S V - S
e

e is the minimum cost edge

between S and V-S

e1

Optimality Proofs

• Prim’s Algorithm computes a MST

• Kruskal’s Algorithm computes a MST

• Show that when an edge is added to the

MST by Prim or Kruskal, the edge is the

minimum cost edge between S and V-S

for some set S.

Prim’s Algorithm

S = { }; T = { };

while S != V

choose the minimum cost edge

e = (u,v), with u in S, and v in V-S

add e to T

add v to S

Prove Prim’s algorithm computes

an MST

• Show an edge e is in the MST when it is

added to T

Kruskal’s Algorithm

Let C = {{v1}, {v2}, . . ., {vn}}; T = { }

while |C| > 1

Let e = (u, v) with u in Ci and v in Cj be the

minimum cost edge joining distinct sets in C

Replace Ci and Cj by Ci U Cj

Add e to T

Prove Kruskal’s algorithm

computes an MST

• Show an edge e is in the MST when it is

added to T

Reverse-Delete Algorithm

• Lemma: The most expensive edge on a

cycle is never in a minimum spanning tree

e

Reverse-Delete Algorithm

• Let e be the max cost edge whose

removal does not disconnect the graph

• Let T be a spanning tree of G=(V, E – {e})

Dealing with the assumption of no

equal weight edges

• Force the edge weights to be distinct

– Add small quantities to the weights

– Give a tie breaking rule for equal weight

edges

Application: Clustering

• Given a collection of points in an r-

dimensional space, and an integer K,

divide the points into K sets that are

closest together

Distance clustering

• Divide the data set into K subsets to

maximize the distance between any pair of

sets

– dist (S1, S2) = min {dist(x, y) | x in S1, y in S2}

Divide into 2 clusters

Divide into 3 clusters

Divide into 4 clusters

Distance Clustering Algorithm

Let C = {{v1}, {v2},. . ., {vn}}; T = { }

while |C| > K

Let e = (u, v) with u in Ci and v in Cj be the

minimum cost edge joining distinct sets in C

Replace Ci and Cj by Ci U Cj

K-clustering

Shortest paths in directed

graphs vs undirected graphs

a

b

c
s

e

g

f

d

4

2

1

2

1
5

4

2
3

3

6

3

7

4

a

b

c
s

e

g

f

d

4

2

1

2

1
5

4

2
3

3

6

3

7

4

What about the minimum spanning

tree of a directed graph?

• Must specify the root r

• Branching: Out tree with root r

a

b

c
s

e

g

f

d

4

2

1

2

1
5

4

2
3

3

6

3

7

4
a

b

c
s

e

g

f

d

4

2

1

2

1
5

4

2
3

3

6

3

7

4

Assume all vertices reachable from r Also called an arborescence

Finding a minimum branching

r

48

10 102

41

2 2

r

4

2

4

2 2

Finding a minimum branching

• Remove all edges going into r

• Normalize the edge weights, so the

minimum weight edge coming into each

vertex has weight zero

7

2 4

5

0 2

This does not change the edges of the

minimum branching

Finding a minimum branching

• Consider the graph that consists of the

minimum cost edge coming in to each

vertex

– If this graph is a branching, then it is the

minimum cost branching

– Otherwise, the graph contains one or more

cycles

• Collapse the cycles in the original graph to super

vertices

• Reweight the graph and repeat the process

Finding a minimum branching

r

48

10 102

41

2 2

rr

04

8 61

00

0 0

1

0

r

4

2

4

2 2

Correctness Proof

• The lemma justifies using the

edges of the cycle in the

branching

• An induction argument is

used to cover the multiple

levels of compressing cycles

Lemma 4.38 Let C be a cycle in G consisting of edges of

cost 0 with r not in C. There is an optimal branching rooted

at r that has exactly one edge entering C.

r

04

0 01

00

0 0

