CSE 421 Algorithms

Autumn 2019 Lecture 9 Dijkstra's algorithm

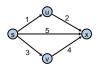
Last Week - Greedy Algorithms

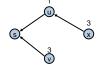
- Task scheduling to minimize maximum lateness
 - Interchange lemma

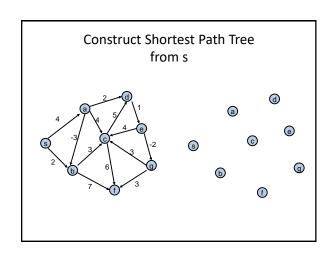
- Farthest in the future algorithm for optimal caching
 - Discard element whose first occurrence is last in the sequence

A, B, C, A, C, D, C, B, C, A, D

Announcement

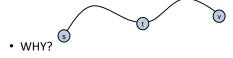

- Collaboration Policy
 - Discussing problems with other students is okay
 - Write ups must be done independently
 - Acknowledge people you work with

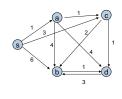

This week

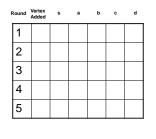

- Topics
 - Dijkstra's Algorithm (Section 4.4)
 - Wednesday: Shortest Paths / Minimum Spanning Trees
 - Friday: Minimum Spanning Trees
- Reading
 - **-** 4.4, 4.5, 4.7, 4.8

Single Source Shortest Path Problem

- Given a graph and a start vertex s
 - Determine distance of every vertex from s
 - Identify shortest paths to each vertex
 - Express concisely as a "shortest paths tree"
 - Each vertex has a pointer to a predecessor on shortest path




Warmup


 If P is a shortest path from s to v, and if t is on the path P, the segment from s to t is a shortest path between s and t

Assume all edges have non-negative cost Dijkstra's Algorithm S = {}; d[s] = 0; d[v] = infinity for v != s While S != V Choose v in V-S with minimum d[v] Add v to S For each w in the neighborhood of v d[w] = min(d[w], d[v] + c(v, w))

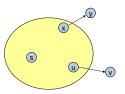
Simulate Dijkstra's algorithm (starting from s) on the graph

Who was Dijkstra?

• What were his major contributions?

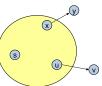
http://www.cs.utexas.edu/users/EWD/

- Edsger Wybe Dijkstra was one of the most influential members of computing science's founding generation. Among the domains in which his scientific contributions are fundamental are
 - algorithm design
 - programming languages
 - program design
 - operating systems
 - distributed processing
 - $\boldsymbol{-}$ formal specification and verification
 - design of mathematical arguments



Dijkstra's Algorithm as a greedy algorithm

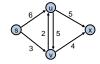
• Elements committed to the solution by order of minimum distance


Correctness Proof

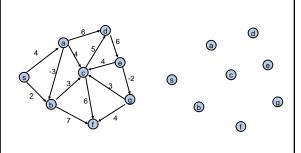
- Elements in S have the correct label
- Key to proof: when v is added to S, it has the correct distance label.

Proof

- Let v be a vertex in V-S with minimum d[v]
- Let P_v be a path of length d[v], with an edge (u,v)
- Let P be some other path to v. Suppose P first leaves S on the edge (x, y)
 - $P = P_{sx} + c(x,y) + P_{yv}$
 - $\operatorname{Len}(P_{sx}) + c(x,y) >= d[y]$
 - $Len(P_{vv}) >= 0$
 - Len(P) >= d[y] + 0 >= d[v]



Negative Cost Edges


 Draw a small example a negative cost edge and show that Dijkstra's algorithm fails on this example

Bottleneck Shortest Path

• Define the bottleneck distance for a path to be the maximum cost edge along the path

Compute the bottleneck shortest paths

How do you adapt Dijkstra's algorithm to handle bottleneck distances

• Does the correctness proof still apply?