Greedy Algorithms

- Solve problems with the simplest possible algorithm
- The hard part: showing that something simple actually works
- Today’s problems (Sections 4.2, 4.3)
 - Homework Scheduling
 - Optimal Caching
 - Subsequence testing

Homework Scheduling

- Tasks to perform
- Deadlines on the tasks
- Freedom to schedule tasks in any order
- Can I get all my work turned in on time?
- If I can’t get everything in, I want to minimize the maximum lateness

Scheduling tasks

- Each task has a length t_i and a deadline d_i
- All tasks are available at the start
- One task may be worked on at a time
- All tasks must be completed

- Goal minimize maximum lateness
 - Lateness = $f_i - d_i$ if $f_i \geq d_i$

Example

<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Lateness 1

<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Lateness 3
Determine the minimum lateness

<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
</tr>
</tbody>
</table>

Greedy Algorithm

- Earliest deadline first
- Order jobs by deadline
- This algorithm is optimal

Analysis

- Suppose the jobs are ordered by deadlines, \(d_1 \leq d_2 \leq \ldots \leq d_n \)
- A schedule has an inversion if job \(j \) is scheduled before \(i \) where \(j > i \)
- The schedule \(A \) computed by the greedy algorithm has no inversions.
- Let \(O \) be the optimal schedule, we want to show that \(A \) has the same maximum lateness as \(O \)

List the inversions

<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
</tr>
</tbody>
</table>

Lemma: There is an optimal schedule with no idle time

- It doesn’t hurt to start your homework early!

Note on proof techniques
- This type of can be important for keeping proofs clean
- It allows us to make a simplifying assumption for the remainder of the proof

Lemma

- If there is an inversion \(i, j \), there is a pair of adjacent jobs \(i', j' \) which form an inversion
Interchange argument

• Suppose there is a pair of jobs i and j, with \(d_i \leq d_j \) and j scheduled immediately before i. Interchanging i and j does not increase the maximum lateness.

\[
\begin{array}{c|c|c}
j & i \\
\hline
d_i & d_j \\
\end{array}
\quad \quad \quad \quad
\begin{array}{c|c|c}
i & j \\
\hline
d_i & d_j \\
\end{array}
\]

Proof by Bubble Sort

\[
\begin{array}{c|c|c|c|c}
a_4 & a_2 & a_3 & a_1 \\
\hline
a_4 & a_2 & a_3 & a_1 \\
\hline
a_4 & a_2 & a_3 & a_1 \\
\hline
a_4 & a_2 & a_3 & a_1 \\
\end{array}
\]

Determine maximum lateness

Real Proof

• There is an optimal schedule with no inversions and no idle time.
• Let O be an optimal schedule k inversions, we construct a new optimal schedule with k-1 inversions
• Repeat until we have an optimal schedule with 0 inversions
• This is the solution found by the earliest deadline first algorithm

Result

• Earliest Deadline First algorithm constructs a schedule that minimizes the maximum lateness

Homework Scheduling

• How is the model unrealistic?

Extensions

• What if the objective is to minimize the sum of the lateness?
 – EDF does not work
• If the tasks have release times and deadlines, and are non-preemptable, the problem is NP-complete
• What about the case with release times and deadlines where tasks are preemptable?
Optimal Caching

- Caching problem:
 - Maintain collection of items in local memory
 - Minimize number of items fetched

Caching example

A, B, C, D, A, E, B, A, D, A, C, B, D, A

Optimal Caching

- If you know the sequence of requests, what is the optimal replacement pattern?
- Note – it is rare to know what the requests are in advance – but we still might want to do this:
 - Some specific applications, the sequence is known
 - Register allocation in code generation
 - Competitive analysis, compare performance on an online algorithm with an optimal offline algorithm

Farthest in the future algorithm

- Discard element used farthest in the future

A, B, C, A, C, D, C, B, C, A, D

Correctness Proof

- Sketch
- Start with Optimal Solution O
- Convert to Farthest in the Future Solution F-F
- Look at the first place where they differ
- Convert O to evict F-F element
 - There are some technicalities here to ensure the caches have the same configuration . . .

Subsequence Testing

- Is \(a_1a_2\ldots a_m \) a subsequence of \(b_1b_2\ldots b_n \)?
 - e.g. is T,R,E,E a subsequence of S,T,U,A,R,T,R,E,G,E,S

T R E E
S T U A R T R E G E S
Next week