CSE 421 Algorithms

Richard Anderson Winter 2019 Lecture 7

Announcements

- · Reading
 - For today, sections 4.1, 4.2, 4.4
 - For friday, sections 4.5, 4.7, 4.8
- · Homework 3 is available
 - Random Interval Graphs

2

Highlight from last lecture: Topological Sort Algorithm While there exists a vertex v with in-degree 0 Output vertex v Delete the vertex v and all out going edges

Greedy Algorithms

3

5

Greedy Algorithms

- Solve problems with the simplest possible algorithm
- The hard part: showing that something simple actually works
- · Pseudo-definition
 - An algorithm is Greedy if it builds its solution by adding elements one at a time using a simple rule

Scheduling Theory

- Tasks
 - Processing requirements, release times, deadlines
- Processors
- · Precedence constraints
- · Objective function
 - Jobs scheduled, lateness, total execution time

Interval Scheduling

- · Tasks occur at fixed times
- · Single processor
- · Maximize number of tasks completed

• Tasks {1, 2, ... N}

· Start and finish times, s(i), f(i)

9

Greedy Algorithm for Scheduling

Let T be the set of tasks, construct a set of independent tasks I, A is the rule determining the greedy algorithm

 $I = \{\ \}$

While (T is not empty)

Select a task t from T by a rule A

Add t to I

Remove t and all tasks incompatible with t from T

Simulate the greedy algorithm for each of these heuristics

Schedule earliest starting task

Schedule shortest available task

Schedule task with fewest conflicting tasks

10

Greedy solution based on earliest finishing time

Example 1

Example 2

Example 3

Theorem: Earliest Finish Algorithm is Optimal

- · Key idea: Earliest Finish Algorithm stays ahead
- Let $A = \{i_1, \ldots, i_k\}$ be the set of tasks found by EFA in increasing order of finish times
- Let B = $\{j_1, \ldots, j_m\}$ be the set of tasks found by a different algorithm in increasing order of finish times
- Show that for $r \le \min(k, m)$, $f(i_r) \le f(j_r)$

11

- A always stays ahead of B, f(i_r) <= f(j_r)
- Induction argument
 - $-f(i_1) <= f(j_1)$
 - $\text{ If } f(i_{r-1}) \le f(j_{r-1}) \text{ then } f(i_r) \le f(j_r)$

Completing the proof

- Let $A=\{i_1,\,\ldots,\,i_k\}$ be the set of tasks found by EFA in increasing order of finish times
- Let O = {j₁, ..., j_m} be the set of tasks found by an optimal algorithm in increasing order of finish times

How many processors are needed

for this example?

 If k < m, then the Earliest Finish Algorithm stopped before it ran out of tasks

13 14

Scheduling all intervals

 Minimize number of processors to schedule all intervals

15

Prove that you cannot schedule this set of intervals with two processors

17

18

Algorithm

- · Sort by start times
- Suppose maximum depth is d, create d slots
- Schedule items in increasing order, assign each item to an open slot
- Correctness proof: When we reach an item, we always have an open slot

What happens on "Random" sets of intervals

- · Given n random intervals
 - What is the expected number independent intervals
 - What is the expected depth

19 20

What is a random set of intervals

- Method 1:
 - Each interval assigned random start position in [0, 1]
 - Each interval assigned a random end length in [0,1]
- · Method 2:
 - Start with the array [1, 1, 2, 2, 3, 3, 4, 4, 5, 5]
 - Randomly permute it [2, 1, 4, 2, 3, 4, 5, 1, 3, 5]
 - Index of the first j is the start of interval j, and the index of the second j is the end of interval j

Scheduling tasks

- Each task has a length ti and a deadline di
- · All tasks are available at the start
- · One task may be worked on at a time
- · All tasks must be completed
- · Goal minimize maximum lateness
 - Lateness = $f_i d_i$ if $f_i >= d_i$

21 22

23 24