1/17/2019

CSE 421
Algorithms

Richard Anderson
Autumn 2019
Lecture 6

Announcements

* No class Monday

— Richard Anderson will shift office hours to
Tuesday, 3:30-4:30 pm, Jan 22 (CSE 582)

* Reading
— Start on Chapter 4

Stable Matching Results

n m-rank w-rank

* Averages of 5 runs 500 510 a805
o 22 eess

* Much better for M than W » o s
* Why is it better for M? R
1000 G0 e

1000 o0 sent

1000 e ms

1000 e s

) 1000 e s

* What is the growth of m- 1000 TRy
rank and w-rank as a 2000 1w s

; 2000 0w
function of n? 2000 we sy

2000 7.16 274.76
2000 7.54 261.60
2000 829 2662

Graph Theory
* G=(V,E) * Path: vy, v,, ..., v, with
— V: vertices, |V|=n (v, \/_-‘,,1) in &
— E: edges, |E[|=m - ?mlple Path
* Undirected graphs - Si‘:;;e Cycle

- (Edge}s sets of two vertices « Neighborhood

u, V.
* Directed graphs - N(v)
— Edges ordered pairs (u, v) * Dlstance.)
* Many other flavors + Connectivity
— Edge / vertices weights — Undirected -
— Parallel edges — Directed (strong connectivity)
— Self loops * Trees
— Rooted
— Unrooted

Last Lecture

* Bipartite Graphs : two-colorable graphs

* Breadth First Search algorithm for testing two-
colorability
— Two-colorable iff no odd length cycle
— BFS has cross edge iff graph has odd cycle

Graph Search

¢ Data structure for next vertex to visit
determines search order

Graph search

Breadth First Search Depth First Search
S={s} S={s}
while S is not empty while S is not empty
u = Dequeue(S) u = Pop(S)
if u is unvisited if uis unvisited
visit u visit u
foreach v in N(u) foreach v in N(u)
Enqueue(s, v) Push(s, v)

1/17/2019

Breadth First Search

* All edges go between vertices on the same
layer or adjacent layers

Depth First Search

* Each edge goes between,””
vertices on the same
branch

1
1
1
\

* No cross edges

Connected Components

* Undirected Graphs

e

Computing Connected Components in
O(n+m) time
* A search algorithm from a vertex v can find all
vertices in v's component

* While there is an unvisited vertex v, search
from v to find a new component

Directed Graphs

* A Strongly Connected Component is a subset

of the vertices with paths between every pair
of vertices.

L7

1/17/2019

Identify the Strongly Connected
Components

N

Strongly connected components can be
found in O(n+m) time

* Butit’s tricky!
* Simpler problem: given a vertex v, compute the
vertices in v’s scc in O(n+m) time

Topological Sort

* Given a set of tasks with precedence
constraints, find a linear order of the tasks

G — G — @D

\ @%
(EETP .

Find a topological order for the following
graph

If a graph has a cycle, there is no
topological sort

* Consider the first vertex

on the cycle in the ® &)
topological sort /

* It must have an
incoming edge \ ®

Definition: A graph is
Acyclic if it has no cycles

Lemma: If a (finite) graph is acyclic, it has a
vertex with in-degree 0

* Proof:
— Pick a vertex v, if it has in-degree 0 then done
—If not, let (v,, v,) be an edge, if v, has in-degree 0
then done
—If not, let (v;, v,) be an edge . ..
— If this process continues for more than n steps, we
have a repeated vertex, so we have a cycle

1/17/2019

Topological Sort Algorithm

While there exists a vertex v with in-degree 0
Output vertex v

Delete the vertex v and all out going edges

Details for O(n+m) implementation

Maintain a list of vertices of in-degree 0
Each vertex keeps track of its in-degree

Update in-degrees and list when edges are
removed

m edge removals at O(1) cost each

