CSE 421 Algorithms

Richard Anderson Autumn 2019 Lecture 6

Announcements

• No class Monday

 Richard Anderson will shift office hours to Tuesday, 3:30-4:30 pm, Jan 22 (CSE 582)

- Reading
 - Start on Chapter 4

Stable Matching Results

m rank

n

2000

8.29

w-rank

98.05 66.95 58.18 75.87 90.73 77.95

146.93 154.71 133.53 128.96 137.85 140.40

257.79 263.78 175.17 274.76 261.60

246.62

		11	111-1 di ik
•	Averages of 5 runs	500	5.10
		500	7.52
•	Much better for M than W	500	8.57
		500	6.32
	M/by is it botton for M2	500	5.25
•	very is it better for ivin	500	6.55
		1000	6.80
		1000	6.50
		1000	7.14
		1000	7.44
-	\A/le at is the a group the of us	1000	7.36
•	what is the growth of m-	1000	7.04
	rank and w-rank as a	2000	7.83
		2000	7.50
	tunction of n?	2000	11.42
		2000	7.16
		2000	7.54

Graph Theory

- G = (V, E)
 - V: vertices, |V| = n
 - E: edges, |E| = m
- Undirected graphs
 - Edges sets of two vertices {u, v}
- Directed graphs
 - Edges ordered pairs (u, v)
- Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops

- Path: $v_1, v_2, ..., v_k$, with (v_i, v_{i+1}) in E
 - Simple Path
 - Cycle
 - Simple Cycle
- Neighborhood
 N(v)
- Distance
- Connectivity
 - Undirected
 - Directed (strong connectivity)
- Trees
 - Rooted
 - Unrooted

Last Lecture

- Bipartite Graphs : two-colorable graphs
- Breadth First Search algorithm for testing twocolorability
 - Two-colorable iff no odd length cycle
 - BFS has cross edge iff graph has odd cycle

Graph Search

• Data structure for next vertex to visit determines search order

Graph search

Breadth First Search

S = {s} while S is not empty u = Dequeue(S) if u is unvisited visit u foreach v in N(u) Enqueue(S, v) Depth First Search S = {s} while S is not empty u = Pop(S) if u is unvisited visit u foreach v in N(u) Push(S, v)

Breadth First Search

 All edges go between vertices on the same layer or adjacent layers

Depth First Search

- Each edge goes between, vertices on the same branch
- No cross edges

Connected Components

• Undirected Graphs

Computing Connected Components in O(n+m) time

- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

Directed Graphs

 A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.

Identify the Strongly Connected Components

Strongly connected components can be found in O(n+m) time

- But it's tricky!
- Simpler problem: given a vertex v, compute the vertices in v's scc in O(n+m) time

Topological Sort

• Given a set of tasks with precedence constraints, find a linear order of the tasks

Find a topological order for the following graph

If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

Definition: A graph is Acyclic if it has no cycles

Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0

- Proof:
 - Pick a vertex v_1 , if it has in-degree 0 then done
 - If not, let (v_2, v_1) be an edge, if v_2 has in-degree 0 then done
 - If not, let (v_3, v_2) be an edge . . .
 - If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Topological Sort Algorithm

While there exists a vertex v with in-degree 0

Output vertex v

Delete the vertex v and all out going edges

Details for O(n+m) implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at O(1) cost each