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Announcements

• No class Monday

– Richard Anderson will shift office hours to 
Tuesday, 3:30-4:30 pm, Jan 22 (CSE 582)

• Reading

– Start on Chapter 4



Stable Matching Results

• Averages of 5 runs

• Much better for M than W

• Why is it better for M?

• What is the growth of m-
rank and w-rank as a 
function of n?

n m-rank w-rank
500 5.10 98.05

500 7.52 66.95

500 8.57 58.18

500 6.32 75.87

500 5.25 90.73

500 6.55 77.95

1000 6.80 146.93

1000 6.50 154.71

1000 7.14 133.53

1000 7.44 128.96

1000 7.36 137.85

1000 7.04 140.40

2000 7.83 257.79

2000 7.50 263.78

2000 11.42 175.17

2000 7.16 274.76

2000 7.54 261.60

2000 8.29 246.62



Graph Theory

• G = (V, E)
– V:  vertices,  |V|= n
– E:  edges,  |E| = m 

• Undirected graphs
– Edges sets of two vertices 

{u, v}
• Directed graphs

– Edges ordered pairs (u, v)
• Many other flavors

– Edge / vertices weights
– Parallel edges
– Self loops

• Path:  v1, v2, …, vk, with 
(vi, vi+1) in E
– Simple Path
– Cycle
– Simple Cycle

• Neighborhood
– N(v)

• Distance
• Connectivity

– Undirected
– Directed (strong connectivity)

• Trees
– Rooted
– Unrooted



Last Lecture

• Bipartite Graphs : two-colorable graphs

• Breadth First Search algorithm for testing two-
colorability

– Two-colorable iff no odd length cycle

– BFS has cross edge iff graph has odd cycle



Graph Search

• Data structure for next vertex to visit 
determines search order



Graph search

Breadth First Search

S = {s}

while S is not empty

u = Dequeue(S)

if u is unvisited

visit u

foreach v in N(u)

Enqueue(S, v)

Depth First Search

S = {s}

while S is not empty

u = Pop(S)

if u is unvisited

visit u

foreach v in N(u)

Push(S, v)



Breadth First Search

• All edges go between vertices on the same 
layer or adjacent layers
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Depth First Search

• Each edge goes between 
vertices on the same 
branch

• No cross edges
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Connected Components

• Undirected Graphs



Computing Connected Components in 
O(n+m) time

• A search algorithm from a vertex v can find all 
vertices in v’s component

• While there is an unvisited vertex v, search 
from v to find a new component



Directed Graphs

• A Strongly Connected Component is a subset 
of the vertices with paths between every pair 
of vertices.



Identify the Strongly Connected 
Components



Strongly connected components can be 
found in O(n+m) time

• But it’s tricky!

• Simpler problem: given a vertex v, compute the 
vertices in v’s scc in O(n+m) time



Topological Sort

• Given a set of tasks with precedence 
constraints, find a linear order of the tasks
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Find a topological order for the following 
graph
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If a graph has a cycle, there is no 
topological sort

• Consider the first vertex 
on the cycle in the 
topological sort

• It must have an 
incoming edge B
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Definition:  A graph is 

Acyclic if it has no cycles



Lemma: If a (finite) graph is acyclic, it has a 
vertex with in-degree 0

• Proof:  

– Pick a vertex v1, if it has in-degree 0 then done

– If not, let (v2, v1) be an edge, if v2 has in-degree 0 
then done

– If not, let (v3, v2) be an edge . . .

– If this process continues for more than n steps, we 
have a repeated vertex, so we have a cycle



Topological Sort Algorithm

While there exists a vertex v with in-degree 0

Output vertex v

Delete the vertex v and all out going edges
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Details for O(n+m) implementation

• Maintain a list of vertices of in-degree 0

• Each vertex keeps track of its in-degree

• Update in-degrees and list when edges are 
removed

• m edge removals at O(1) cost each


