## CSE 421 Algorithms

Richard Anderson Autumn 2019 Lecture 5

#### Announcements

- Reading

   Chapter 3 (Mostly review)
   Start on Chapter 4
- No class on Monday

### Review from Wednesday

- Run time function T(n)
  - T(n) is the maximum time to solve an instance of size n
- Disregard constant functions
- T(n) is O(f(n)) [T : Z<sup>+</sup> → R<sup>+</sup>]
   If n is sufficiently large, T(n) is bounded by a constant multiple of f(n)
  - Exist c,  $n_0$ , such that for  $n > n_0$ , T(n) < c f(n)

### **Graph Theory**

- G = (V, E)
  - V vertices
  - E edges
- Undirected graphs

   Edges sets of two vertices {u, v}
- Directed graphs
- Edges ordered pairs (u, v)
- Many other flavors
  - Edge / vertices weights
  - Parallel edges
  - Self loops

# $\begin{array}{l} \text{Definitions} \\ \bullet \text{ Path: } v_1, v_2, ..., v_k, \text{ with } (v_i, v_{i+1}) \text{ in } E \\ & - \text{ Simple Path} \\ & - \text{ Cycle} \\ & - \text{ Simple Cycle} \\ \bullet \text{ Neighborhood} \\ & - \text{ N}(v) \\ \bullet \text{ Distance} \\ \bullet \text{ Connectivity} \\ & - \text{ Undirected} \\ & - \text{ Directed (strong connectivity)} \\ \bullet \text{ Trees} \\ & - \text{ Rooted} \\ & - \text{ Unrooted} \\ \end{array}$













• If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Theorem: A graph is bipartite if and only if it has no odd cycles







• If a graph has no odd length cycles, then it is bipartite











- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component





# Strongly connected components can be found in O(n+m) time

- But it's tricky!
- Simpler problem: given a vertex v, compute the vertices in v's scc in O(n+m) time







## Lemma: If a graph is acyclic, it has a vertex with in degree 0

- Proof:
  - Pick a vertex v<sub>1</sub>, if it has in-degree 0 then done
  - If not, let  $(v_2, v_1)$  be an edge, if  $v_2$  has in-degree 0 then done
  - If not, let  $(v_3, v_2)$  be an edge . . .
  - If this process continues for more than n steps, we have a repeated vertex, so we have a cycle



### Details for O(n+m) implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at O(1) cost each