Announcements

• Reading
 – Chapter 3 (Mostly review)
 – Start on Chapter 4

• No class on Monday
Review from Wednesday

• Run time function $T(n)$
 – $T(n)$ is the maximum time to solve an instance of size n

• Disregard constant functions

• $T(n)$ is $O(f(n))$ \[T : \mathbb{Z}^+ \rightarrow \mathbb{R}^+ \]
 – If n is sufficiently large, $T(n)$ is bounded by a constant multiple of $f(n)$
 – Exist c, n_0, such that for $n > n_0$, $T(n) < c \cdot f(n)$
Graph Theory

• $G = (V, E)$
 – V – vertices
 – E – edges

• Undirected graphs
 – Edges sets of two vertices $\{u, v\}$

• Directed graphs
 – Edges ordered pairs (u, v)

• Many other flavors
 – Edge / vertices weights
 – Parallel edges
 – Self loops
Definitions

• Path: \(v_1, v_2, ..., v_k \), with \((v_i, v_{i+1}) \) in \(E \)
 – Simple Path
 – Cycle
 – Simple Cycle

• Neighborhood
 – \(N(v) \)

• Distance

• Connectivity
 – Undirected
 – Directed (strong connectivity)

• Trees
 – Rooted
 – Unrooted
Graph Representation

V = \{ a, b, c, d \}

E = \{ \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\} \}

Adjacency List

Incidence Matrix

\[
\begin{array}{cccc}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
\end{array}
\]
Graph search

• Find a path from s to t

\[S = \{s\} \]

while S is not empty

\begin{align*}
 u &= \text{Select}(S) \\
 \text{visit } u \\
 \text{foreach } v \text{ in } N(u) \quad & \text{if } v \text{ is unvisited} \\
 \quad & \text{Add}(S, v) \\
 \quad & \text{Pred}[v] = u \\
 \text{if } (v = t) \text{ then path found}
\end{align*}
Breadth first search

• Explore vertices in layers
 – s in layer 1
 – Neighbors of s in layer 2
 – Neighbors of layer 2 in layer 3 . . .
Key observation

• All edges go between vertices on the same layer or adjacent layers
Bipartite Graphs

- A graph V is bipartite if V can be partitioned into V_1, V_2 such that all edges go between V_1 and V_2
- A graph is bipartite if it can be two colored
Can this graph be two colored?
Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite
Theorem: A graph is bipartite if and only if it has no odd cycles
Lemma 1

- If a graph contains an odd cycle, it is not bipartite
Lemma 2

• If a BFS tree has an *intra-level edge*, then the graph has an odd length cycle

Intra-level edge: both end points are in the same level
Lemma 3

• If a graph has no odd length cycles, then it is bipartite
Graph Search

• Data structure for next vertex to visit determines search order
Graph search

Breadth First Search

\[S = \{s\} \]

while S is not empty

\[u = \text{Dequeue}(S) \]

if u is unvisited

visit u

foreach v in N(u)

Enqueue(S, v)

Depth First Search

\[S = \{s\} \]

while S is not empty

\[u = \text{Pop}(S) \]

if u is unvisited

visit u

foreach v in N(u)

Push(S, v)
Breadth First Search

- All edges go between vertices on the same layer or adjacent layers
Depth First Search

- Each edge goes between vertices on the same branch
- No cross edges
Connected Components

- Undirected Graphs
Computing Connected Components in $O(n+m)$ time

- A search algorithm from a vertex v can find all vertices in v’s component
- While there is an unvisited vertex v, search from v to find a new component
Directed Graphs

- A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.
Identify the Strongly Connected Components
Strongly connected components can be found in $O(n+m)$ time

- But it’s tricky!
- Simpler problem: given a vertex v, compute the vertices in v’s scc in $O(n+m)$ time
Topological Sort

• Given a set of tasks with precedence constraints, find a linear order of the tasks.
Find a topological order for the following graph.
If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge
Lemma: If a graph is acyclic, it has a vertex with in degree 0

• Proof:
 – Pick a vertex v_1, if it has in-degree 0 then done
 – If not, let (v_2, v_1) be an edge, if v_2 has in-degree 0 then done
 – If not, let (v_3, v_2) be an edge . . .
 – If this process continues for more than n steps, we have a repeated vertex, so we have a cycle
Topological Sort Algorithm

While there exists a vertex \(v \) with in-degree 0

Output vertex \(v \)

Delete the vertex \(v \) and all outgoing edges
Details for $O(n+m)$ implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at $O(1)$ cost each