CSE 421 Algorithms

Richard Anderson Autumn 2019 Lecture 5

Announcements

- Reading
 - Chapter 3 (Mostly review)
 - Start on Chapter 4
- No class on Monday

Review from Wednesday

- Run time function T(n)
 - T(n) is the maximum time to solve an instance of size n
- Disregard constant functions
- T(n) is O(f(n)) $[T: Z^+ \rightarrow R^+]$
 - If n is sufficiently large, T(n) is bounded by a constant multiple of f(n)
 - Exist c, n_0 , such that for $n > n_0$, T(n) < c f(n)

Graph Theory

- G = (V, E)
 - V vertices
 - E edges
- Undirected graphs
 - Edges sets of two vertices {u, v}
- Directed graphs
 - Edges ordered pairs (u, v)
- Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops

Definitions

- Path: $v_1, v_2, ..., v_k$, with (v_i, v_{i+1}) in E
 - Simple Path
 - Cycle
 - Simple Cycle
- Neighborhood
 - N(v)
- Distance
- Connectivity
 - Undirected
 - Directed (strong connectivity)
- Trees
 - Rooted
 - Unrooted

Graph Representation

 $V = \{ a, b, c, d \}$

 $E = \{ \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\} \}$

Adjacency List

	1	1	1
1		0	1
1	0		0
1	1	0	

Incidence Matrix

Graph search

• Find a path from s to t

 $S = {s}$ while S is not empty u = Select(S)visit u foreach v in N(u) if v is unvisited Add(S, v)Pred[v] = uif (v = t) then path found

Breadth first search

- Explore vertices in layers
 - s in layer 1
 - Neighbors of s in layer 2
 - Neighbors of layer 2 in layer 3 . . .

Key observation

 All edges go between vertices on the same layer or adjacent layers

Bipartite Graphs

- A graph V is bipartite if V can be partitioned into V₁, V₂ such that all edges go between V₁ and V₂
- A graph is bipartite if it can be two colored

Can this graph be two colored?

Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 1

• If a graph contains an odd cycle, it is not bipartite

Lemma 2

• If a BFS tree has an *intra-level edge*, then the graph has an odd length cycle

Intra-level edge: both end points are in the same level

Lemma 3

• If a graph has no odd length cycles, then it is bipartite

Graph Search

• Data structure for next vertex to visit determines search order

Graph search

Breadth First Search

S = {s} while S is not empty u = Dequeue(S) if u is unvisited visit u foreach v in N(u) Enqueue(S, v) Depth First Search S = {s} while S is not empty u = Pop(S) if u is unvisited visit u foreach v in N(u) Push(S, v)

Breadth First Search

 All edges go between vertices on the same layer or adjacent layers

Depth First Search

- Each edge goes between, vertices on the same branch
- No cross edges

Connected Components

• Undirected Graphs

Computing Connected Components in O(n+m) time

- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

Directed Graphs

 A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.

Identify the Strongly Connected Components

Strongly connected components can be found in O(n+m) time

- But it's tricky!
- Simpler problem: given a vertex v, compute the vertices in v's scc in O(n+m) time

Topological Sort

• Given a set of tasks with precedence constraints, find a linear order of the tasks

Find a topological order for the following graph

If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

Lemma: If a graph is acyclic, it has a vertex with in degree 0

- Proof:
 - Pick a vertex v_1 , if it has in-degree 0 then done
 - If not, let (v_2, v_1) be an edge, if v_2 has in-degree 0 then done
 - If not, let (v_3, v_2) be an edge . . .
 - If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Topological Sort Algorithm

While there exists a vertex v with in-degree 0

Output vertex v

Delete the vertex v and all out going edges

Details for O(n+m) implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at O(1) cost each