

Five Problems

CSE 421 Richard Anderson Autumn 2019, Lecture 3

Announcements

· Course website:

Lecture Schodule, CSE 421, Winter 2019							
Leature	Des	Topic	Reading	Lenney	Stides		
Leavel	Node, Issue T	Count Introduction, Stable Marriage	Kirishop Torics, Section 1.1	Sattle Note:	(2220) (SSE) (EDE. Hanison)		
Leanur 2	Wednesday, James F.	Static Manhing	Kiristop Tato, Series 1.1	Robert Automos	(2233) (SSC) (SSC) (Bankson)		
Lenus 3	Polic, leven 11	Fre2ndims	Kirahop Tarios, Sersion 1.2				
Letter-f	Mostley, Facusey 14	Rusine	KleiderpTette, Section 21, 22				

- Office hours
 - Richard Anderson

 - Monday, 2-40 pm 3:30 pm, CSE 582
 Wednesday, 2:40 pm 3:30 pm, CSE 582
 Leiyi Zhang, Monday, 10:30 am-11:20 am, CSE 4th floor breakout

 - Aditya Saraf, Monday, 11:30 am 12:20 pm, Gates 151
 Sean Jaffe, Monday, 3:00 pm 3:50 pm, Gates 152
 - Mathew Luo, Tuesday, 10:30 am 11:20 am, Gates 151

 - Faye Yu, Tuesday, 2:00 pm 2:50 pm, CSE 007

 Anny Kong, Thursday, 1:00 pm 1:50 pm, CSE 017

 Anny Kong, Thursday, 1:00 pm 1:50 pm, CSE 021

 Phillip Quinn, Friday, 2:30 pm 3:20 pm, Gates 153

 Xin Yang, Friday, 4:00 pm 4:50 pm, CSE 220

Theory of Algorithms

- · What is expertise?
- · How do experts differ from novices?

Introduction of five problems

- Show the types of problems we will be considering in the class
- Examples of important types of problems
- Similar looking problems with very different characteristics
- Problems
 - Scheduling
 - Weighted Scheduling
 - Bipartite Matching
 - Maximum Independent Set
 - Competitive Facility Location

What is a problem?

- Instance
- Solution
- · Constraints on solution
- Measure of value

Problem: Scheduling

- · Suppose that you own a banquet hall
- · You have a series of requests for use of the hall: $(s_1, f_1), (s_2, f_2), \dots$

· Find a set of requests as large as possible with no overlap

What is the largest solution?							
							

Greedy Algorithm

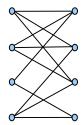
- Test elements one at a time if they can be members of the solution
- If an element is not ruled out by earlier choices, add it to the solution
- Many possible choices for ordering (length, start time, end time)
- For this problem, considering the jobs by increasing end time works

Suppose we add values?

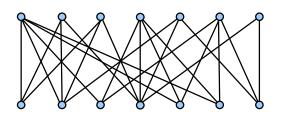
- (s_i, f_i, v_i), start time, finish time, payment
- Maximize value of elements in the solution

5			2		1
1	2		4	_	_1_
	3	1		6	

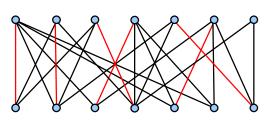
Greedy Algorithms


- · Earliest finish time
- Maximum value
- Give counter examples to show these algorithms don't find the maximum value solution

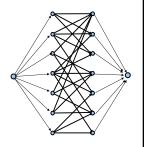
Dynamic Programming


- Requests R₁, R₂, R₃, . . .
- Assume requests are in increasing order of finish time (f₁ < f₂ < f₃...)
- Opt, is the maximum value solution of $\{R_1,\,R_2,\,\ldots,\,R_i\}$ containing R_i
- Opt_i = Max{ $j | f_i < s_i$ }[Opt_i + v_i]

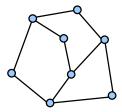
Matching


- Given a bipartite graph G=(U,V,E), find a subset of the edges M of maximum size with no common endpoints.
- · Application:
 - U: Professors
 - V: Courses
 - (u,v) in E if Prof. u can teach course v

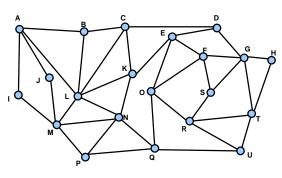
Find a maximum matching



Augmenting Path Algorithm


Reduction to network flow

- · More general problem
- Send flow from source to sink
- Flow subject to capacities at edges
- Flow conserved at vertices
- Can solve matching as a flow problem



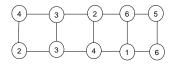
Maximum Independent Set

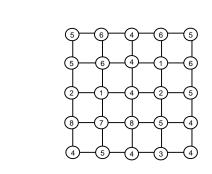
- Given an undirected graph G=(V,E), find a set I of vertices such that there are no edges between vertices of I
- Find a set I as large as possible

Find a Maximum Independent Set

Verification: Prove the graph has an independent set of size 8

Key characteristic


- · Hard to find a solution
- Easy to verify a solution once you have one
- · Other problems like this
 - Hamiltonian circuit
 - Clique
 - Subset sum
 - Graph coloring


NP-Completeness

- · Theory of Hard Problems
- A large number of problems are known to be equivalent
- · Very elegant theory

Are there even harder problems?

- · Simple game:
 - Players alternating selecting nodes in a graph
 - · Score points associated with node
 - · Remove nodes neighbors
 - When neither can move, player with most points wins

Competitive Facility Location

- · Choose location for a facility
 - Value associated with placement
 - Restriction on placing facilities too close together
- · Competitive
 - Different companies place facilities
 - E.g., KFC and McDonald's

Complexity theory

- These problems are P-Space complete instead of NP-Complete
 - Appear to be much harder
 - No obvious certificate
 - G has a Maximum Independent Set of size 10
 - Player 1 wins by at least 10 points

Summary

- Scheduling
- Weighted Scheduling
- Bipartite Matching
- Maximum Independent SetCompetitive Scheduling