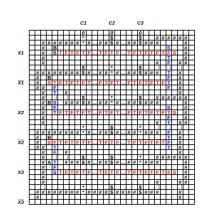


Five Problems

CSE 421
Richard Anderson
Autumn 2019, Lecture 3



Announcements

Course website: //courses.cs.washington.edu/courses/cse421/19wi/

Lecture Schedule, CSE 421, Winter 2019

Lecture	Date	Topic	Reading	Lecturer	Slides
Lecture 1	Monday, January 7	Course Introduction, Stable Marriage	Kleinberg-Tardos, Section 1.1	Robbie Weber	(PPTX) (PDF) (PDF Handouts)
Lecture 2	Wednesday, January 9	Stable Matching	Kleinberg-Tardos, Section 1.1	Richard Anderson	(PPTX) (PDF) (PDF Handouts)
Lecture 3	Friday, January 11	Five Problems	Kleinberg-Tardos, Section 1.2		
Lecture 4	Monday, January 14	Runtime	Kleinberg-Tardos, Sections 2.1, 2.2		
T	W. 1 1 7 16	C 1.79	771 1 7 1 0 1 01 01 01		

Office hours

- Richard Anderson
 - Monday, 2:40 pm 3:30 pm, CSE 582
 - Wednesday, 2:40 pm 3:30 pm, CSE 582
- Leiyi Zhang, Monday, 10:30 am-11:20 am, CSE 4th floor breakout
- Aditya Saraf, Monday, 11:30 am 12:20 pm, Gates 151
- Sean Jaffe, Monday, 3:00 pm 3:50 pm, Gates 152
- Mathew Luo, Tuesday, 10:30 am 11:20 am, Gates 151
- Faye Yu, Tuesday, 2:00 pm 2:50 pm, CSE 007
- Anny Kong, Thursday, 1:00 pm 1:50 pm, CSE 021
- Phillip Quinn, Friday, 2:30 pm 3:20 pm, Gates 153
- Xin Yang, Friday, 4:00 pm 4:50 pm, CSE 220

Theory of Algorithms

- What is expertise?
- How do experts differ from novices?

Introduction of five problems

- Show the types of problems we will be considering in the class
- Examples of important types of problems
- Similar looking problems with very different characteristics
- Problems
 - Scheduling
 - Weighted Scheduling
 - Bipartite Matching
 - Maximum Independent Set
 - Competitive Facility Location

What is a problem?

- Instance
- Solution
- Constraints on solution
- Measure of value

Problem: Scheduling

- Suppose that you own a banquet hall
- You have a series of requests for use of the hall:
 (s₁, f₁), (s₂, f₂), . . .

 Find a set of requests as large as possible with no overlap

What	is the lar	gest solu	tion?

Greedy Algorithm

- Test elements one at a time if they can be members of the solution
- If an element is not ruled out by earlier choices, add it to the solution
- Many possible choices for ordering (length, start time, end time)
- For this problem, considering the jobs by increasing end time works

Suppose we add values?

- (s_i, f_i, v_i), start time, finish time, payment
- Maximize value of elements in the solution

Greedy Algorithms

Earliest finish time

Maximum value

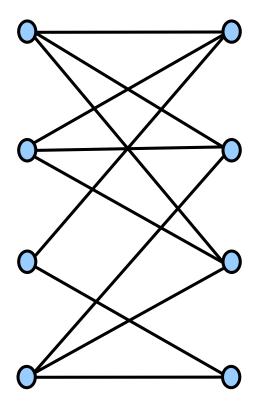
 Give counter examples to show these algorithms don't find the maximum value solution

Dynamic Programming

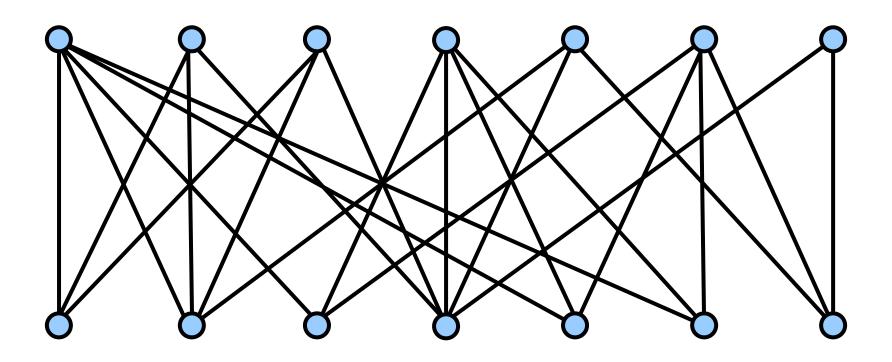
- Requests R₁, R₂, R₃, . . .
- Assume requests are in increasing order of finish time (f₁ < f₂ < f₃ . . .)
- Opt_i is the maximum value solution of {R₁, R₂, . . . , R_i} containing R_i
- Opt_i = Max{ $j \mid f_j < s_i$ }[Opt_j + v_i]

Matching

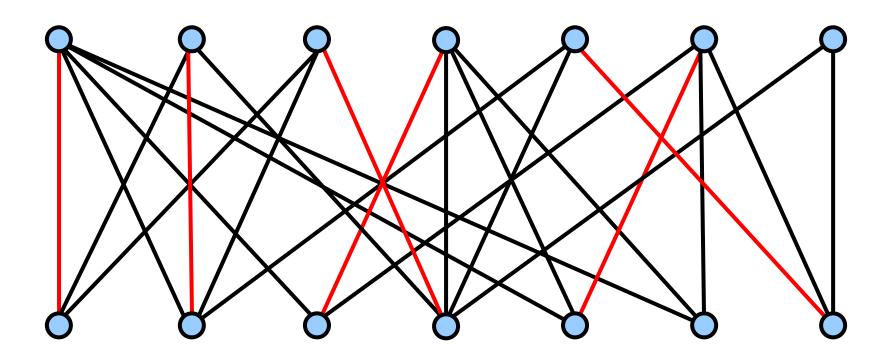
- Given a bipartite graph G=(U,V,E), find a subset of the edges M of maximum size with no common endpoints.
- Application:
 - U: Professors
 - V: Courses
 - (u,v) in E if Prof. u can teach course v



Find a maximum matching

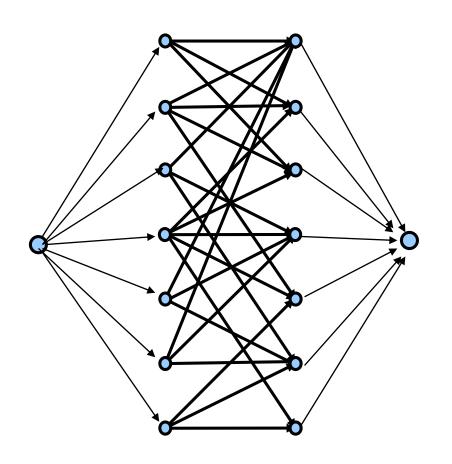


Augmenting Path Algorithm



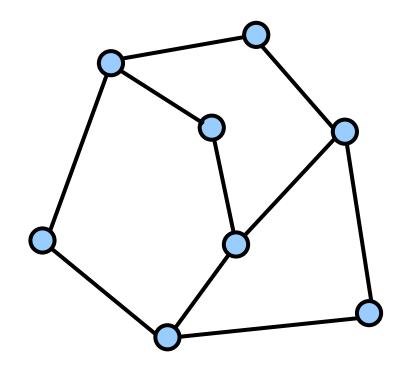
Reduction to network flow

- More general problem
- Send flow from source to sink
- Flow subject to capacities at edges
- Flow conserved at vertices
- Can solve matching as a flow problem

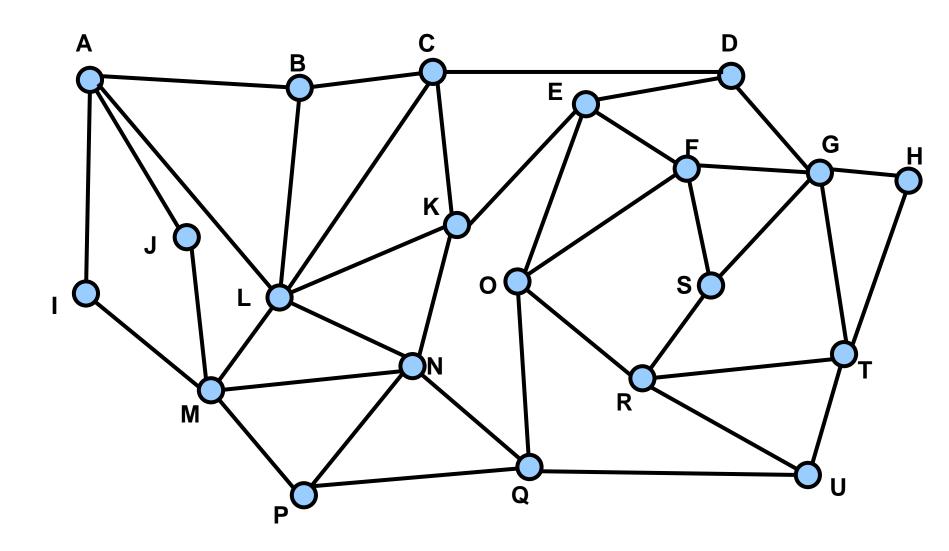


Maximum Independent Set

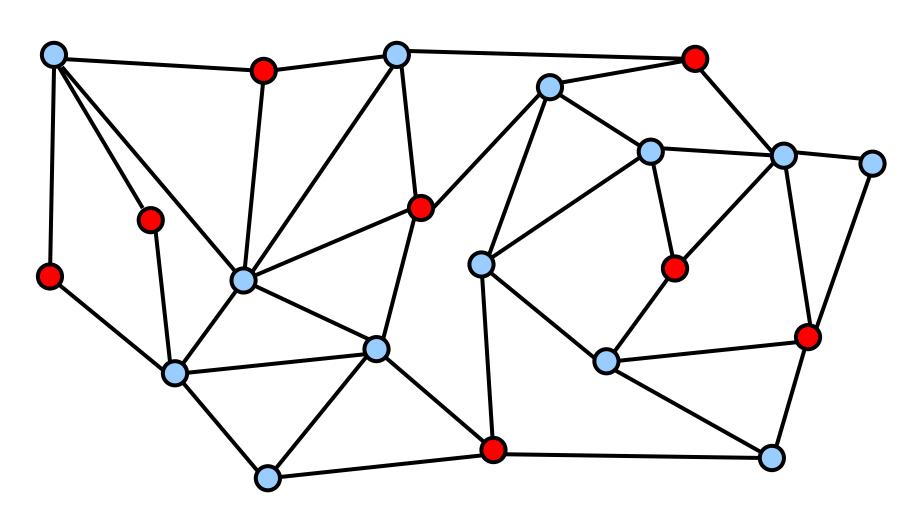
- Given an undirected graph G=(V,E), find a set I of vertices such that there are no edges between vertices of I
- Find a set I as large as possible



Find a Maximum Independent Set



Verification: Prove the graph has an independent set of size 8



Key characteristic

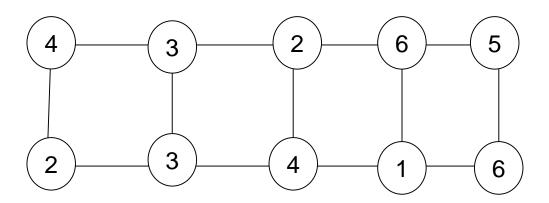
- Hard to find a solution
- Easy to verify a solution once you have one
- Other problems like this
 - Hamiltonian circuit
 - Clique
 - Subset sum
 - Graph coloring

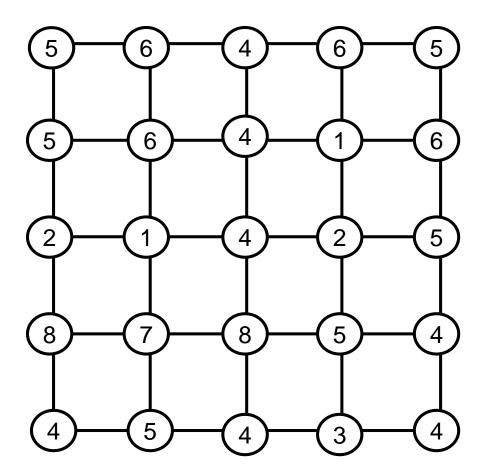
NP-Completeness

- Theory of Hard Problems
- A large number of problems are known to be equivalent
- Very elegant theory

Are there even harder problems?

- Simple game:
 - Players alternating selecting nodes in a graph
 - Score points associated with node
 - Remove nodes neighbors
 - When neither can move, player with most points wins





Competitive Facility Location

- Choose location for a facility
 - Value associated with placement
 - Restriction on placing facilities too close together
- Competitive
 - Different companies place facilities
 - E.g., KFC and McDonald's

Complexity theory

- These problems are P-Space complete instead of NP-Complete
 - Appear to be much harder
 - No obvious certificate
 - G has a Maximum Independent Set of size 10
 - Player 1 wins by at least 10 points

Summary

- Scheduling
- Weighted Scheduling
- Bipartite Matching
- Maximum Independent Set
- Competitive Scheduling