

CSE 421 Algorithms

Richard Anderson Winter 2019 Lecture 2

Announcements

- · Homework due Wednesdays
 - HW 1, Due January 16
 - It's on the web
 - Submit solutions on canvas
 - pay attention to making explanations clear and understandable
- Instructor Office hours (CSE 582):
 - Monday 2:30-3:20, Wednesday 2:30-3:20
- TA Office hours:
 - TBD

Course Mechanics

- Homework
 - Due Wednesdays
 - About 5 problems, sometimes programming
 - Target: 1 week turnaround on grading
- Exams (In class)
 - Midterm, Wednesday, February 13
 - Final, Monday, March 18, 2:30-4:20 pm
- Approximate grade weighting
 - HW: 50, MT: 15, Final: 35
- Course web
 - Slides, Handouts
 - Lecture schedule is fairly accurate

Stable Matching: Formal Problem

- Input
 - Preference lists for $m_1, m_2, ..., m_n$
 - Preference lists for w₁, w₂, ..., w_n
- Output
 - Perfect matching M satisfying stability property (e.g., no instabilities):

For all m', m", w', w' $\text{If } (m', w') \in M \text{ and } (m", w") \in M \text{ then } \\ (m' \text{ prefers } w' \text{ to } w") \text{ or } (w" \text{ prefers } m" \text{ to } m')$

Idea for an Algorithm

m proposes to w

If w is unmatched, w accepts

If w is matched to m₂

If w prefers m to m₂ w accepts m, dumping m₂
If w prefers m₂ to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to

Algorithm

Initially all m in M and w in W are free While there is a free m

w highest on m's list that m has not proposed to if w is free, then match (m, w)

suppose (m₂, w) is matched if w prefers m to m₂ unmatch (m₂, w) match (m, w)

Example m₁: w₁ w₂ w₃ m₂: w₁ w₃ w₂ m₃: w₁ w₂ w₃ w₁: m₂ m₃ m₁ w₂: m₃ m₁ m₂ w₃: m₃ m₁ m₂ w₃: m₃ m₁ m₂ Order: m₁, m₂, m₃, m₁, m₃, m₁

Does this work?

- · Does it terminate?
- Is the result a stable matching?
- Begin by identifying invariants and measures of progress
 - m's proposals get worse (have higher m-rank)
 - Once w is matched, w stays matched
 - w's partners get better (have lower w-rank)

Claim: If an m reaches the end of its list, then all the w's are matched

Claim: The algorithm stops in at most n² steps

When the algorithms halts, every w is matched

Hence, the algorithm finds a perfect matching

The resulting matching is stable

Suppose

$$(m_1, w_1) \in M, (m_2, w_2) \in M$$

 m_1 prefers w_2 to w_1

How could this happen?

Result

- Simple, O(n²) algorithm to compute a stable matching
- Corollary
 - A stable matching always exists

A closer look

Stable matchings are not necessarily fair

m₁: w₁ w₂ w₃

m₃: w₂ w₃ w₁

 w_1 : m_2 m_3 m_1

 w_2 : m_3 m_1 m_2 w_3 : m_1 m_2 m_3

How many stable matchings can you find?

(m_1)

 (w_1)

Algorithm under specified

- · Many different ways of picking m's to propose
- · Surprising result
 - All orderings of picking free m's give the same result
- · Proving this type of result
 - Reordering argument
 - Prove algorithm is computing something mores specific
 - Show property of the solution so it computes a specific stable matching

M-rank and W-rank of matching

- m-rank: position of matching w in preference list
- M-rank: sum of m-ranks
- w-rank: position of matching m in preference list
- W-rank: sum of w-ranks

m₁: w₁ w₂ w₃ m₂: w₁ w₃ w₂ m₃: w₁ w₂ w₃ w₁: m₂ m₃ m₁ w₂: m₃ m₁ m₂

w₃: m₃ m₁ m₂

What is the M-rank?

What is the W-rank?

Suppose there are n m's, and n w's

- What is the minimum possible M-rank?
- · What is the maximum possible M-rank?
- Suppose each m is matched with a random w, what is the expected M-rank?

Random Preferences

Suppose that the preferences are completely random

 $\begin{array}{l} m_1: \, w_8 \,\, w_3 \,\, w_1 \,\, w_5 \,\, w_9 \,\, w_2 \,\, w_4 \,\, w_6 \,\, w_7 \,\, w_{10} \\ m_2: \,\, w_7 \,\, w_{10} \,\, w_1 \,\, w_9 \,\, w_3 \,\, w_4 \,\, w_8 \,\, w_2 \,\, w_5 \,\, w_6 \end{array}$

 $\begin{array}{c} \cdots \\ w_1: \, m_1 \,\, m_4 \,\, m_9 \,\, m_5 \,\, m_{10} \,\, m_3 \,\, m_2 \,\, m_6 \,\, m_8 \,\, m_7 \\ w_2: \,\, m_5 \,\, m_8 \,\, m_1 \,\, m_3 \,\, m_2 \,\, m_7 \,\, m_9 \,\, m_{10} \,\, m_4 \,\, m_6 \end{array}$

If there are n m's and n w's, what is the expected value of the M-rank and the W-rank when the proposal algorithm computes a stable matching?

Stable Matching Algorithms

- · M Proposal Algorithm
 - Iterate over all m's until all are matched
- · W Proposal Algorithm
 - Change the role of m's and w's
 - Iterate over all w's until all are matched

Best choices for one side may be bad for the other

Design a configuration for problem of size 4: m₂:

M proposal algorithm: m₃:

All m's get first choice, all w's get last choice

W proposal algorithm:

All w's get first choice, all m's get last choice

w₄:

w₂:

w₃:

w₄:

But there is a stable second choice

m₁: Design a configuration for problem of size 4: m₂: M proposal algorithm: m₃: All m's get first choice, all w's get last choice W proposal algorithm: All w's get first choice, all m's get last choice w₁: There is a stable matching W_2 : where everyone gets their second choice W₃: W_4 :

What is the run time of the Stable Matching Algorithm?

Initially all m in M and w in W are free
While there is a free m

w highest on m's list that m has not proposed to if w is free, then match (m, w) else

suppose (m₂, w) is matched if w prefers m to m₂

unmatch (m₂, w)

match (m, w)

O(1) time per iteration

- Find free m
- · Find next available w
- If w is matched, determine m₂
- Test if w prefer m to m₂
- · Update matching

What does it mean for an algorithm to be efficient?

Key ideas

- Formalizing real world problem
 - Model: graph and preference lists
 Mechanism: stability condition
- Specification of algorithm with a natural operation
 - Proposal
- Establishing termination of process through invariants and progress measure
- Under specification of algorithm
- Establishing uniqueness of solution