

Pearson International Edition

CSE 421 Algorithms

作業 図 差 力 ウス学業 数 単 基 力 作 大学 連切線有限時要式 数4 本 方 作 大学 連切線有限時要式 数4 本 方 作 (2010年)

Richard Anderson Winter 2019 Lecture 2

Announcements

- Homework due Wednesdays
 - HW 1, Due January 16
 - It's on the web
 - Submit solutions on canvas
 - pay attention to making explanations clear and understandable
- Instructor Office hours (CSE 582):
 Monday 2:30-3:20, Wednesday 2:30-3:20
- TA Office hours:

– TBD

Course Mechanics

- Homework
 - Due Wednesdays
 - About 5 problems, sometimes programming
 - Target: 1 week turnaround on grading
- Exams (In class)
 - Midterm, Wednesday, February 13
 - Final, Monday, March 18, 2:30-4:20 pm
- Approximate grade weighting
 - HW: 50, MT: 15, Final: 35
- Course web
 - Slides, Handouts
 - Lecture schedule is fairly accurate

Stable Matching: Formal Problem

- Input
 - Preference lists for $m_1, m_2, ..., m_n$
 - Preference lists for $w_1, w_2, ..., w_n$
- Output
 - Perfect matching M satisfying stability property (e.g., no instabilities) :

```
For all m', m", w', w"
If (m', w') ∈ M and (m", w") ∈ M then
(m' prefers w' to w") or (w" prefers m" to m')
```

Idea for an Algorithm

m proposes to w

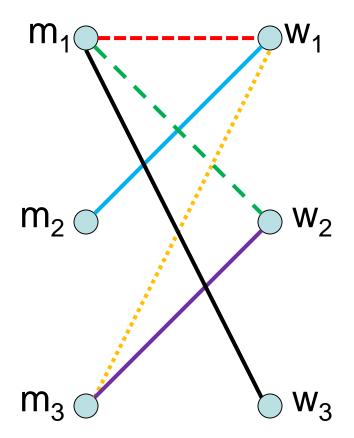
If w is unmatched, w accepts

- If w is matched to m₂
 - If w prefers m to m_2 w accepts m, dumping m_2
 - If w prefers m₂ to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to

Algorithm

Initially all m in M and w in W are free While there is a free m


w highest on m's list that m has not proposed to if w is free, then match (m, w)

else

suppose (m_2, w) is matched if w prefers m to m_2 unmatch (m_2, w) match (m, w)

Example

 $m_1: w_1 w_2 w_3$ m₂: w₁ w₃ w₂ $m_3: w_1 w_2 w_3$ w₁: m₂ m₃ m₁ $W_2: m_3 m_1 m_2$ $W_3: m_3 m_1 m_2$

Order: $m_1, m_2, m_3, m_1, m_3, m_1$

Does this work?

- Does it terminate?
- Is the result a stable matching?

- Begin by identifying invariants and measures of progress
 - m's proposals get worse (have higher m-rank)
 - Once w is matched, w stays matched
 - w's partners get better (have lower w-rank)

Claim: If an m reaches the end of its list, then all the w's are matched

Claim: The algorithm stops in at most n² steps


When the algorithms halts, every w is matched

Hence, the algorithm finds a perfect matching

The resulting matching is stable

Suppose

 $(m_1, w_1) \in M, (m_2, w_2) \in M$ m₁ prefers w₂ to w₁

How could this happen?

Result

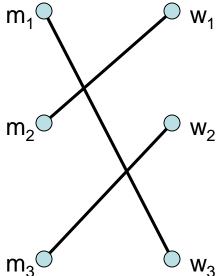
- Simple, O(n²) algorithm to compute a stable matching
- Corollary
 - A stable matching always exists

A closer look

Stable matchings are not necessarily fair

How many stable matchings can you find?

Algorithm under specified


- Many different ways of picking m's to propose
- Surprising result

- All orderings of picking free m's give the same result

- Proving this type of result
 - Reordering argument
 - Prove algorithm is computing something mores specific
 - Show property of the solution so it computes a specific stable matching

M-rank and W-rank of matching

- m-rank: position of matching w in preference list
- M-rank: sum of m-ranks
- w-rank: position of matching m in preference list
- W-rank: sum of w-ranks

What is the M-rank?

What is the W-rank?

Suppose there are n m's, and n w's

• What is the minimum possible M-rank?

• What is the maximum possible M-rank?

 Suppose each m is matched with a random w, what is the expected M-rank?

Random Preferences

Suppose that the preferences are completely random

. . .

If there are n m's and n w's, what is the expected value of the M-rank and the W-rank when the proposal algorithm computes a stable matching?

Stable Matching Algorithms

- M Proposal Algorithm
 - Iterate over all m's until all are matched
- W Proposal Algorithm
 - Change the role of m's and w's
 - Iterate over all w's until all are matched

Best choices for one side may be bad for the other

Design a configuration for	m ₁ :
problem of size 4:	m ₂ :
M proposal algorithm:	m :
All m's get first choice, all w's get last choice	m ₃ :
W proposal algorithm:	m ₄ :
All w's get first choice, all m's	
get last choice	w ₁ :
	W ₂ :

W₃:

But there is a stable second choice

Design a configuration for problem of size 4:	m ₁ : m ₂ :
M proposal algorithm: All m's get first choice, all w's get last choice	m ₃ :
W proposal algorithm: All w's get first choice, all m's get last choice	m ₄ : w ₁ :
There is a stable matching where everyone gets their	W ₂ :
second choice	W ₃ :

What is the run time of the Stable Matching Algorithm?

Initially all m in M and w in W are free While there is a free m Executed at most n² times w highest on m's list that m has not proposed to if w is free, then match (m, w) else suppose (m₂, w) is matched if w prefers m to m₂ unmatch (m₂, w) match (m w)

match (m, w)

O(1) time per iteration

- Find free m
- Find next available w
- If w is matched, determine m₂
- Test if w prefer m to m₂
- Update matching

What does it mean for an algorithm to be efficient?

Key ideas

- Formalizing real world problem
 - Model: graph and preference lists
 - Mechanism: stability condition
- Specification of algorithm with a natural operation
 - Proposal
- Establishing termination of process through invariants and progress measure
- Under specification of algorithm
- Establishing uniqueness of solution