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CSE 421

Algorithms

Richard Anderson   

Winter 2019

Lecture 1

CSE 421 Course Introduction

• CSE 421, Introduction to Algorithms
– MWF, 1:30-2:20 pm

– THO 101

• Instructor
– Richard Anderson, anderson@cs.washington.edu
– Office hours: 

• CSE 582 (Until Feb 18,  then CSE2 344)

• Office hours: Monday 2:30-3:30,  Wednesday 2:30-3:30

– Getting back from India tomorrow  

• Teaching Assistants 
– Sean Jaffe

– Mathew Luo

– Aditya Saraf

– Xin Yang
– Faye Yu

– Leiyi Zhang

Announcements

• It’s on the web.

• Homework  due Wednesdays

– HW 1, Due January 16

– It’s on the web 

– Submit solutions on canvas

• You should be on the course mailing list

– But it will probably go to your uw.edu account

Textbook

• Algorithm Design

• Jon Kleinberg, Eva Tardos

• Read Chapters 1 & 2

• Expected coverage:
– Chapter 1 through 7

• Book available at:
– UW Bookstore ($174)

– Ebay ($17.95 to $264.54)

– Amazon ($17.83 and up)

– Kindle ($105.99)

– PDF (Google Search)

There is only one edition of this book, and the 

international versions are fine

Course Mechanics

• Homework
– Due Wednesdays

– About 5 problems,  sometimes programming

– Target: 1 week turnaround on grading

• Exams (In class)
– Midterm,  Wednesday,  February 13

– Final, Monday, March 18, 2:30-4:20 pm

• Approximate grade weighting
– HW: 50, MT: 15, Final: 35

• Course web
– Slides, Handouts 

Guest Lecturer

• Robbie Weber

mailto:anderson@cs.washington.edu
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Introductory Problem

For today: A sample of what you’ll do in this course

-Define a problem

-And solve it with an algorithm

Motivation:

-Assign TAs to Instructors

-Avoid a TA and Instructor wanting the same change

-E.g., Prof A. would rather have student X than her 
current TA, and student X would rather work for 
Prof A. than his current instructor.

Motivation

The real world is complicated.

-Students shouldn’t TA a course they haven’t taken.

-Instructors need varying numbers of TAs.

-There are more TA applicants than positions.

Let’s simplify
-Everyone can be assigned to every course.

-Every course needs exactly one TA.

-There are exactly as many applicants as courses.

The algorithmic ideas in the simple case can be 
adapted to handle the general case.

Stable Matching Problem

In the simplified version, a metaphor other than TAs 
and courses is common.

We’ll think of the sets as “men” and “women” instead 
of courses and TAs.

The problem design is really used to
-Match new doctors to their residencies

-Assign students to high schools in some districts

-Among many other applications.

Given two sets M = 𝑚1, … , 𝑚𝑛 ,𝑊 = {𝑤1, … , 𝑤𝑛}

each ranks every person in the other set.

Goal: Match each person to exactly one person in the 
other set, respecting their preferences.

How do we “respect preferences”?

Avoid unmatched pairs (𝑚,𝑤) where 𝑚 prefers 𝑤 to 
his match, and 𝑤 prefers 𝑚 to her match.

𝑤𝑚

𝑚′ 𝑤′

𝑤 ,𝑤’ 𝑚 ,𝑚’

Stable Matching Problem

Stable Matching, More Formally

Perfect matching:

•Each man is paired with exactly one woman.

•Each woman is paired with exactly one man.

Stability: no incentive to exchange

•an unmatched pair 𝑚-𝑤 is unstable

•if man 𝑚 and woman 𝑤 prefer each other to 
current partners.

Stable matching: perfect matching with no 
unstable pairs.

Given: the preference lists of 𝑛 men and 𝑛 women 
Find: a stable matching (if one exists).

Stable Matching Problem

𝑤1𝑚1

𝑚2 𝑤2

𝑤1 , 𝑤2 𝑚1 ,𝑚2

𝑤1 , 𝑤2 𝑚1 ,𝑚2

𝑤1𝑚1

𝑚2 𝑤2

𝑤1 , 𝑤2 𝑚1 ,𝑚2

𝑤1 , 𝑤2 𝑚1 ,𝑚2

𝑤1𝑚1

𝑚2 𝑤2

𝑤1 , 𝑤2, 𝑤3 𝑚1 , 𝑚2, 𝑚3

𝑤2 , 𝑤1, 𝑤3 𝑚1 , 𝑚2, 𝑚3

𝑤3𝑚3𝑤1 , 𝑤2, 𝑤3 𝑚1 , 𝑚2, 𝑚3

Why are these not stable matchings?

Find a stable matching for this instance.

Examples



1/8/2019

3

Questions

Does a stable matching always exist?

Can we find a stable matching efficiently?

We’ll answer both of those questions today

Let’s start with the second one.

Idea for an Algorithm

𝑚 proposes to 𝑤
If 𝑤 is unmatched 

𝑤 tentatively accepts

Else 𝑤 is matched to some man 𝑚′

If 𝑤 prefers 𝑚 to 𝑚′

𝑤 tentatively accepts 𝑚, rejecting 𝑚′

Else (𝑤 prefers 𝑚’ to 𝑚) 

𝑤 rejects 𝑚

Unmatched 𝑚 proposes to the highest 𝑤 on his 
preference list that he has not already proposed to.

Algorithm

Initially all 𝑚 in 𝑀 and 𝑤 in 𝑊 are free

While there is a free 𝑚
𝑤 highest on 𝑚’s list that 𝑚 has not proposed to

if 𝑤 is free, then match (𝑚, 𝑤)
else 

suppose (𝑚′, 𝑤) are matched

if 𝑤 prefers 𝑚 to 𝑚′
unmatch (𝑚’, 𝑤)
match (𝑚,𝑤)

Algorithm Example

𝑤1𝑚1

𝑚2 𝑤2

𝑤1 , 𝑤2, 𝑤3 𝑚2 , 𝑚3, 𝑚1

𝑤1 , 𝑤3, 𝑤2 𝑚3 , 𝑚1, 𝑚2

𝑤3𝑚3𝑤1 , 𝑤2, 𝑤3 𝑚3 , 𝑚1, 𝑚2

Proposals: 𝑚1, 𝑚2, 𝑚1, 𝑚3, 𝑚3, 𝑚1

Does this work?

Does it terminate?

Is the result a stable matching?

Begin by identifying invariants and measures of 
progress

-m’s proposals get worse

-Once w is matched, w stays matched

-w’s partners get better

Claim 1: If 𝑚 reaches the end of his list, 
then all the women are matched

A woman only rejects a proposal when she gets a 
better one, so if she rejects someone, she must have 
a match from then on.

So everyone on 𝑚’s list must be matched.

And every woman is on 𝑚’s list!
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Claim 2: The algorithm stops in 𝑂 𝑛2 steps

If every woman is matched, every man must be 
matched too.
-Because each woman is matched to exactly one man and 
there are an equal number of men and women.

It takes at most 𝑂 𝑛2 proposals to get to the end of 
some man’s list.
Claim 2 now follows from Claim 1.

Question 1 answered: The algorithm halts (quickly)!

Now question 2: does it produce a stable matching?

Claim 3: When the algorithms halts, 
every woman is matched

Why?

If we reach the end of someone’s list, it follows from 
Claim 1. 

If we don’t, then every man is matched, but every man 
is matched to exactly one woman.

Hence, the algorithm finds a perfect matching

Claim 4: The resulting matching is stable.

We want to prove a negative

there is no unstable pair.

That’s a good sign for proof by contradiction.

Suppose (for contradiction) that (𝑚1, 𝑤1) and 
(𝑚2, 𝑤2) are matched, but 

𝑚1prefers 𝑤2 to 𝑤1 and

𝑤2 prefers 𝑚1 to 𝑚2

Claim 4: The resulting matching is stable.

How did 𝑚1 end up matched to 𝑤1?

He must have proposed to and been rejected by 𝑤2.

Why did 𝑤2 reject 𝑚1? She got a better offer from 𝑚′.

If 𝑤2 ever changed partners after that, it only got 
better for her, so she must prefer 𝑚2 (her final match) 
to 𝑚1.

A contradiction!

𝑤1𝑚1

𝑚2 𝑤2

…𝑤2 …𝑤1…

…𝑚1 … 𝑚2…

Result

Simple, 𝑂(𝑛2) algorithm to compute a stable 
matching

Corollary

-A stable matching always exists

The corollary isn’t obvious!

The “stable roommates problem” doesn’t always 
have a solution:
-2𝑛 people, rank the other 2𝑛 − 1

-Goal is to pair them without any unstable pairs.  

Next Time

The algorithm is a bit underspecified.
-when more than one man is unmatched, does it matter 
who goes first?

A stable matching always exists, but can there be 
more than one?
-For example, what happens if the women propose instead 
of the men?


