Problem 1 (10 points):
Solve the following recurrences:

\[T(n) = \begin{cases} T\left(\frac{n}{2}\right) \ast T\left(\frac{n}{2}\right) & \text{if } n \leq 1 \\ \frac{T(n) \ast T(n)}{2} & \text{if } n \leq 1 \end{cases} \]

Problem 2 (10 points):
Given an array of elements \(A[1, \ldots, n] \), give an \(O(n \log n) \) time algorithm to find a majority element, namely an element that is stored in more than \(n/2 \) locations, if one exists. Note that the elements of the array are not necessarily integers, so you can only check whether two elements are equal or not, and not whether one is larger than the other. HINT: Observe that if there is a majority element in the whole array, then it must also be a majority element in either the first half of the array or the second half of the array.

Problem 3 (10 points):
Suppose \(A \) is an array of \(n \) integers that is a strictly decreasing sequence, followed by a strictly increase sequence such as \([12, 9, 8, 6, 3, 4, 7, 9, 11]\). Give an \(O(\log n) \) algorithm to find the minimum element of the array.

Problem 4 (10 points):
Let \(A \) and \(B \) be two sorted arrays of integers, each of length \(n \). Show how you can find the median of the combined set of elements in \(O(\log n) \) comparisons. (As in the Median algorithm discussed in lecture, you will need to solve the Select the \(k \)-th largest problem.)