Practice Final Exam

NAME: \qquad

Instructions:

- Closed book, closed notes, no calculators
- Time limit: 1 hour 50 minutes
- Answer the problems on the exam paper.
- If you need extra space use the back of a page
- Problems are not of equal difficulty, if you get stuck on a problem, move on.
- This practice exam is based on the CSE 521 exam from

1	$/ 15$
2	$/ 10$
3	$/ 20$
4	$/ 10$
5	$/ 25$
6	$/ 10$
7	$/ 10$
Total	$/ 100$

Problem 1 (15 points):

Give solutions to the following recurrences. Justify your answers.
a)

$$
T(n)= \begin{cases}3 T(n / 3)+n^{2} & \text { if } n>0 \\ 1 & \text { if } n=0\end{cases}
$$

b)

$$
T(n)= \begin{cases}4 T(n / 3)+n & \text { if } n>0 \\ 1 & \text { if } n=0\end{cases}
$$

c)

$$
T(n)= \begin{cases}T(n / 3)+1 & \text { if } n>1 \\ 0 & \text { if } n=0\end{cases}
$$

Problem 2 (10 points):

Let $G=(V, E)$ be an undirected, bipartite graph. A matching M is said to be maximal if every edge of E shares at least one endpoint with an edge of M. Let $M_{\text {opt }}$ be a maximum cardinality matching for G.
a) Give an example of a graph G, a maximal matching $M_{\text {greed }}$ where $\left|M_{\text {greed }}\right|=\frac{1}{2}\left|M_{\text {opt }}\right|$.
b) For a bipartite graph G, and maximal matching $M_{\text {greed }}$, prove that $\left|M_{\text {greed }}\right| \geq \frac{1}{2}\left|M_{\text {opt }}\right|$.

Problem 3 (20 points):

How can you:
a) Find a maximum weight spanning tree using an algorithm which computes a minimum weight spanning tree.
b) Find a shortest path in an undirected graph, using an algorithm which finds a shortest path in a directed graph.
c) Find a female optimal stable marriag, given an algorithm for a male optimal stable marriage.
d) Find a maximum flow in a graph with capacities on the vertices (meaning a bound on the flow that can go into each vertex), using an algorithm for maximum flow where the capacities are on the edges.

Problem 4 (10 points):

Let $G=(V, E)$ be a directed graph with edge costs, K an integer, and s and t vertices of V. Describe an algorithm which finds the most expensive path from s to t that uses exactly K edges.

Problem 5 (25 points):

What is the fastest known algorithm for each of the following problems? Give a short description or citation (no more than two sentences each). What is the run time of the fastest algorithm?

1. Determining if an undirected graph with n vertices and m edges is bipartite.
2. Computing the longest common subsequence of a pair of strings each of length n.
3. Solving the single source shortest paths problem on a graph with n vertices and m edges.
4. Solving the single source shortest paths problem on an acyclic graph with n vertices and m edges.
5. Checking whether or not an undirected graph with n vertices and m edges has a cycle.
6. Given n points in the plane, find the closest pair of points.
7. Solving the knapsack problem with n items, and a bound of K on the size of the knapsack.
8. Find a maximum cardinality matching in a bipartite graph with n vertices and m edges.

Problem 6 (10 points):

Give short answers to the following questions about network flow:
a) Is the Ford-Fulkerson algorithm a polynomial time algorithm? Why or why not.
b) How do you find the minimum cut of a graph, after a flow algorithm has found the maximum flow?

Problem 7 (10 points):

Suppose that you have an algorithm for determining if a graph with vertex demands and edge capacities has a feasible circulation. How would you use this algorithm to find the value of the maximum flow in a graph with edge capacities and a source and a sink.

