The Greedy is optimal for job scheduly. [Schedule max # of
compartial jobs].
F(i),
$$f(i_2) < -- f(i_{12})$$

F(i), $f(i_2) < -- f(i_{12})$

Good: $k \ge m$.
Confid OPT is not necessing uniq].
Lem: For all $r \ge 1$, $f(i_1) \le f(i_1)$.
Pf of Lem. Use induction.
Bosse Case $r=1$. V First job in grudy has smallest finishing time.
If. Supp for some $r\ge 1$, $f(i_1) \le f(i_1)$.
IS. To show $f(i_{12}) \le f(i_{12})$.
If know $f(i_{12}) \le f(i_{12})$.
If know $f(i_{12}) \le f(i_{12})$.
If $k < m_V$ is compatible with $i_{1k} \otimes C$ $f(i_{1k}) \le f(i_{2k})$.
So j_{121} is a feasible option for Gravity when scheduling i_{121} .
 $=) f(i_{121}) \le f(j_{121})$.
If $k < m_V$ j_{kal} is compatible with $i_{1k} \otimes C$ $f(i_{1k}) \le f(i_{2k}) \le S(i_{2k1})$.
So Grady should schedul j_{1kal} · contradiction!
Thm: Greedy was a classes.
Pf. Supp Greedy was a classes.
Pf. Supp Greedy was a classes.
Coal $d \le depth \le OPT$
 L To show enough to child it a writich line which
crosses d classes.
Look at time the greedy allocates
 $d-i$ $f(i_{121})$ is intermediated.
 $d-i$ $f(i_{121})$ for j_{122} j_{123} j_{123} j_{123} j_{123} j_{123} j_{123} j_{123} j_{133} j_{133}

At this tim we had allocated d-1 classrooms, and they nove all occupied. A new job arrives at tim t, so the for son small 270 gives a line crossing d open intervals.