Thm. Greedy is optimal for job scheduling. [Schedule max \(n \) of compatible jobs.]

\[f(i_1) \leq f(i_2) \leq \cdots \leq f(i_m). \]

Greedy

Goal: \(k \geq m \). [Careful, \(\text{OPT} \) is not necessarily unique.]

Lem: For all \(r \geq 1 \), \(f(C_r) \leq f(C_r') \).

Pf of Lem: Use induction.

Base Case \(r=1 \). First job in greedy has smallest finishing time.

I. Supp for some \(r \geq 1 \), \(f(C_r) \leq f(C_r') \).

II. To show \(f(C_{r+1}) \leq f(C_{r+1'}) \).

We know \(f(C_r) \leq f(C_r') \leq s(i_r) \). \(i_r \) is compatible with \(C_r' \).

So \(i_r \) is a feasible option for Greedy when scheduling \(i_r \) :

\[f(C_{r+1}) \leq f(C_{r+1'}). \]

III. If \(k < m \), \(J_{k+1} \) is compatible with \(i_k \). BC \(f(i_k) \leq f(i_k') \leq s(J_{k+1}) \).

So Greedy should schedule \(J_{k+1} \). Contradiction!

Thm. Greedy uses minimum \(\# \) of classes.

Pf. Supp Greedy uses \(d \) classes.

Goal: \(d \leq \text{depth} \leq \text{OPT} \)

To show, enough to exhibit a vertical line which crosses \(d \) classes.

Look at time \(t \) that greedy allocates \(d \)-th classroom.

\[
\text{Direction: } \text{Every ALG} \geq \text{depth uses classrooms}
\]
At this time we had allocated d-1 classrooms, and they were all occupied. A new job arrives at time t, so the for some small ε > 0 gives a line crossing δ open interval.