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Depth First Search

Follow the first path you find

as far as you can go; back up —

to last unexplored edge when
you reach a dead end,
then go as far you can ”

Naturally implemented using recursive calls or a stack




DFS(s) — Recursive version

Global Initialization: mark all vertices undiscovered

DFS(v)
Mark v discovered

for each edge {v,x}
if (x is undiscovered)
Mark x discovered
DFS(x)

Mark v full-discovered
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Properties of (undirected) DFS

Like BFS(s):
« DFS(s) visits x iff there is a path in G from s to x
So, we can use DFS to find connected components

« Edges into then-undiscovered vertices define a tree —
the "depth first spanning tree" of G

Unlike the BFS tree:
* The DF spanning tree isn't minimum depth
e |ts levels don't reflect min distance from the root

* Non-tree edges never join vertices on the same or
adjacent levels
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Non-Tree Edges in DFS

All non-tree edges join a vertex and one of its
descendents/ancestors in the DFS tree

BFS tree # DFS tree, but, as with BFS, DFS has found a

tree in the graph s.t. non-tree edges are "simple" — only
descendant/ancestor
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Non-Tree Edges in DFS

Obs: During DFS(x) every vertex marked visited is a descendant
of x in the DFS tree

Lemma: For every edge {x, v}, if {x, y} is not in DFS tree, then
one of x or y is an ancestor of the other in the tree.

Proof:

One of x or vy is visited first, suppose WLOG that x is visited first
and therefore DFS(x) was called before DFS(y)

Since {x, y} is not in DFS tree, y was visited when the edge {x,y}
was examined during DFS(x)

Therefore y was visited during the call to DFS(x) soy is a
descendant of x.
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AGs and Topological Ordering



Precedence Constraints

In a directed graph, an edge (i,j) means task i must occur
before task j.

Applications
« Course prerequisite:

« Compilation:

must compile module i before.
« Computing overflow:

output of job i is part of input to job j
« Manufacturing or assembly:

sand it before paint it
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Directed Acyclic Graphs (DAG)

A DAG is a directed acyclic graph, i.e.,
one that contains no directed cycles.

Def:. A topological order of a directed graph G = (V, E) is an

ordering of its nodes as v, Vv, ..., V, SO that for every edge
(Vi, v;) we have i <].

a topological ordering of that DAG—
all edges left-to-right 41



DAGSs: A Sufficient Condition

Lemma: If G has a topological order, then G is a DAG.

Pf. (by contradiction)

Suppose that G has a topological order 1,2, ...,n and that G also
has a directed cycle C.

Let i be the lowest-indexed node in C, and let j be the node just
before i; thus (j,i) is an (directed) edge.

By our choice of i, we have i < j.

On the other hand, since (j,i) isanedge and 1, ...,nis a
topological order, we must have j < i, a contradiction

the directed cycle C

@OMO#O#O@

the supposed topological order: 1,2,...,n 42




DAGSs: A Sufficient Condition

G has a
topological order

G is a DAG
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Every DAG has a source node

Lemma: If G is a DAG, then G has a node with no incoming edges (i.e.,
a source).

Pf. (by contradiction)
Suppose that G is a DAG and and it has no source

Pick any node v, and begin following edges backward from v. Since v
has at least one incoming edge (u, v) we can walk backward to u.

Then, since u has at least one incoming edge (x, u), we can walk

backward to x. Is this similar to a
Repeat until we visit a node, say w, twice. previous proof?

Let C be the sequence of nodes encountered between successive visits
tow. Cis a cycle.
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DAG => Topological Order

Lemma: If G is a DAG, then G has a topological order

Pf. (by induction on n)
Base case: trueifn=1.

IH: Every DAG with n-1 vertices has a topological ordering.

|S: Given DAG with n > 1 nodes, find a source node v.
G — {v}is aDAG, since deleting v cannot create cycles.

Reminder: Always remove
vertices/edges to use IH

By IH, G — {v} has a topological ordering.
Place v first in topological ordering; then append nodes of G - { v }
in topological order. This is valid since v has no incoming edges.
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A Characterization of DAGs

G has a
topological order

I
—

G is a DAG
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Topological Order Algorithm: Example
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Topological Order Algorithm: Example

Topological order: 1, 2, 3, 4, 5, 6, 7
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Topological Sorting Algorithm

Maintain the following:
count[w] = (remaining) number of incoming edges to node w

S = set of (remaining) nodes with no incoming edges
Initialization:
count[w] = 0 for all w
count[w]++ for all edges (v,w) O(m + n)
S =S u {w} for all w with count[w]=0
Main loop:
while S not empty
* remove some v from S
* make v next in topo order O(1) per node
« for all edges from v to some w O(1) per edge
—decrement count[w]
—add w to S if count[w] hits O
Correctness: clear, | hope
Time: O(m + n) (assuming edge-list representation of graph)
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Summary

Graphs: abstract relationships among pairs of objects

Terminology: node/vertex/vertices, edges, paths, multi-edges,
self-loops, connected

Representation: Adjacency list, adjacency matrix
Nodes vs Edges: m = O(n?), often less

BFS: Layers, queue, shortest paths, all edges go to same or
adjacent layer

DFS: recursion/stack; all edges ancestor/descendant

Algorithms: Connected Comp, bipartiteness, topological sort
50



