CSE 421

DFS / Topological Ordering

Shayan Oveis Gharan
Depth First Search

Follow the first path you find as far as you can go; back up to last unexplored edge when you reach a dead end, then go as far you can.

Naturally implemented using recursive calls or a stack.
DFS(s) – Recursive version

Global Initialization: mark all vertices undiscovered

DFS(v)
 Mark v discovered

 for each edge {v,x}
 if (x is undiscovered)
 Mark x discovered
 DFS(x)

 Mark v full-discovered
Suppose edge lists at each vertex are sorted alphabetically.
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)

st[] = {1,2}
DFS(A)

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)
C (B,D,G,H)

st[] =
{1,2,3}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B, J)
 - B (A, C, J)
 - C (B, D, G, H)
 - D (C, E, F)

st[] = {1, 2, 3, 4}
DFS(A)

A,1
B,2
C,3
D,4
E,5

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)

st[] = {1,2,3,4,5}

Color code:
undiscovered
discovered
fully-explored
DFS(A)

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)
C (B,D,G,H)
D (G,E,F)
E (D,F)
F (D,E,G)

st[] =
{1,2,3,4,5,6}

Color code:
undiscovered
discovered
fully-explored
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)
G (C,F)

\[st[] = \{1,2,3,4,5,6,7\}\]
DFS(A)

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)
G (C,F)

st[] =
{1,2,3,4,5,6,7}
DFS(A)

- **Call Stack:**
 - (Edge list)
 - A (B,J)
 - B (A,C,J)
 - C (B,D,G,H)
 - D (C,E,F)
 - E (D,F)
 - F (D,E,G)

- **Color code:**
 - undiscovered
 - discovered
 - fully-explored

- **st[] =**
 - \{1,2,3,4,5,6\}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
- A (B,J)
- B (A,C,J)
- C (B,D,G,H)
- D (C,E,F)
- E (D,F)

\[st[] = \{1,2,3,4,5\} \]
DFS(A)

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)
C (B,D,G,H)
D (G,E,F)

st[] = \{1,2,3,4\}

Color code:
- undiscovered
- discovered
- fully-explored
DFS(A)

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)
C (B,D,G,H)

st[] = \{1,2,3\}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
- A (B, J)
- B (A, C, J)
- C (B, D, G, H)
- H (C, I, J)

\[st[] = \{1, 2, 3, 8\} \]
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
- A (B,J)
- B (A,C,J)
- C (B,D,G,H)
- H (C,I,J)
- I (H)

st[] = {1,2,3,8,9}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
A (B, J)
B (A, C, J)
C (B, D, G, H)
H (C, I, J)

st[] = {1, 2, 3, 8}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)

st[] = {1,2,3,8,10}
DFS(A)

Call Stack:
(Edge list)
A (B, J)
B (A, G, J)
C (B, D, G, H)
H (C, I, J)
J (A, B, H, K, L)
K (J, L)

st[] = {1, 2, 3, 8, 10, 11}

Color code:
undiscovered
discovered
fully-explored
DFS(A)

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)

st[] = {1,2,3,8,10,11,12}

Color code:
undiscovered
discovered
fully-explored
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)
M (L)

st[] =
{1,2,3,8,10,11,12,13}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
- A (B,J)
- B (A,C,J)
- C (B,D,G,H)
- H (C,I,J)
- J (A,B,H,K,L)
- K (J,L)
- L (J,K,M)

st[] = {1,2,3,8,10,11,12}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
- A (B,J)
- B (A,C,J)
- C (B,D,G,H)
- H (C,I,J)
- J (A,B,H,K,L)
- K (J,L)

st[] =
{1,2,3,8,10,11}
DFS(A)

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)

st[] = {1,2,3,8,10}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B, J)
 - B (A, C, J)
 - C (B, D, G, H)
 - H (C, I, J)
 - J (A, B, H, K, L)

\[\text{st[]} = \{1, 2, 3, 8, 10\}\]
DFS(A)

Call Stack:
(Edge list)
A (B, J)
B (A, C, J)
C (B, D, G, H)
H (C, I, J)

st[] = \{1, 2, 3, 8\}

Color code:
- undiscovered
- discovered
- fully-explored
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B, J)
 - B (A, C, J)
 - C (B, D, G, H)

st[] = {1, 2, 3}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
- A (B, J)
- B (A, C, J)

\[\text{st}[] = \{1, 2\} \]
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)

A (B, J)
B (A, C, J)

st[] = {1, 2}
DFS(A)

Call Stack:
(Edge list)
A (B, J)

st[] =
{1}
DFS(A)

A, 1

B, 2

C, 3

D, 4

E, 5

F, 6

G, 7

H, 8

I, 9

J, 10

K, 11

L, 12

M, 13

Call Stack:
(Edge list)
A (B, J)

st[] = {1}

Color code:
- undiscovered
- discovered
- fully-explored
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
TA-DA!!

st[] = {}

A,1
B,2
C,3
D,4
E,5
F,6
G,7
H,8
I,9
J,10
K,11
L,12
M,13
DFS(A)

Edge code:
- Tree edge
- Back edge
DFS(A)

Edge code:
- Tree edge
- Back edge
- No Cross Edges!
Properties of (undirected) DFS

Like BFS(s):
• DFS(s) visits x iff there is a path in G from s to x
 So, we can use DFS to find connected components
• Edges into then-undiscovered vertices define a tree –
 the "depth first spanning tree" of G

Unlike the BFS tree:
• The DF spanning tree isn't minimum depth
• Its levels don't reflect min distance from the root
• Non-tree edges never join vertices on the same or
 adjacent levels
Non-Tree Edges in DFS

All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree

BFS tree \neq DFS tree, but, as with BFS, DFS has found a tree in the graph s.t. non-tree edges are "simple" – only descendant/ancestor
Non-Tree Edges in DFS

Obs: During DFS(x) every vertex marked visited is a descendant of x in the DFS tree

Lemma: For every edge \{x, y\}, if \{x, y\} is not in DFS tree, then one of x or y is an ancestor of the other in the tree.

Proof:
One of x or y is visited first, suppose WLOG that x is visited first and therefore DFS(x) was called before DFS(y)

Since \{x, y\} is not in DFS tree, y was visited when the edge \{x,y\} was examined during DFS(x)

Therefore y was visited during the call to DFS(x) so y is a descendant of x.
DAGs and Topological Ordering
Precedence Constraints

In a directed graph, an edge \((i, j)\) means task \(i\) must occur before task \(j\).

Applications

- Course prerequisite: course \(i\) must be taken before \(j\)
- Compilation: must compile module \(i\) before \(j\)
- Computing overflow: output of job \(i\) is part of input to job \(j\)
- Manufacturing or assembly: sand it before paint it
Directed Acyclic Graphs (DAG)

A DAG is a directed acyclic graph, i.e., one that contains no directed cycles.

Def: A topological order of a directed graph G = (V, E) is an ordering of its nodes as v₁, v₂, …, vₙ so that for every edge (vᵢ, vⱼ) we have i < j.

![Diagram of a DAG and a topological ordering](image-url)
DAGs: A Sufficient Condition

Lemma: If G has a topological order, then G is a DAG.

Pf. (by contradiction)

Suppose that G has a topological order $1,2,\ldots,n$ and that G also has a directed cycle C.

Let i be the lowest-indexed node in C, and let j be the node just before i; thus (j,i) is an (directed) edge.

By our choice of i, we have $i < j$.

On the other hand, since (j,i) is an edge and $1,\ldots,n$ is a topological order, we must have $j < i$, a contradiction.
DAGs: A Sufficient Condition

G has a topological order \rightarrow ? \rightarrow G is a DAG
Every DAG has a source node

Lemma: If G is a DAG, then G has a node with no incoming edges (i.e., a source).

Pf. (by contradiction)
Suppose that G is a DAG and it has no source.
Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u.
Then, since u has at least one incoming edge (x, u), we can walk backward to x.
Repeat until we visit a node, say w, twice.
Let C be the sequence of nodes encountered between successive visits to w. C is a cycle.

Is this similar to a previous proof?
Lemma: If G is a DAG, then G has a topological order.

Pf. (by induction on n)
Base case: true if n = 1.

IH: Every DAG with n-1 vertices has a topological ordering.

IS: Given DAG with n > 1 nodes, find a source node v.

\(G - \{ v \} \) is a DAG, since deleting v cannot create cycles.

By IH, \(G - \{ v \} \) has a topological ordering.

Place v first in topological ordering; then append nodes of \(G - \{ v \} \) in topological order. This is valid since v has no incoming edges.

Reminder: Always remove vertices/edges to use IH.
A Characterization of DAGs

G has a topological order ⇔ G is a DAG
Topological Order Algorithm: Example
Topological Order Algorithm: Example

Topological order: 1, 2, 3, 4, 5, 6, 7
Topological Sorting Algorithm

Maintain the following:
\[\text{count}[w] = \text{(remaining) number of incoming edges to node } w \]
\[S = \text{set of (remaining) nodes with no incoming edges} \]

Initialization:
\[\text{count}[w] = 0 \text{ for all } w \]
\[\text{count}[w]++ \text{ for all edges } (v,w) \quad \text{O}(m + n) \]
\[S = S \cup \{w\} \text{ for all } w \text{ with } \text{count}[w]=0 \]

Main loop:
while S not empty
 • remove some v from S
 • make v next in topo order \quad \text{O}(1) \text{ per node}
 • for all edges from v to some w \quad \text{O}(1) \text{ per edge}
 – decrement count[w]
 – add w to S if count[w] hits 0

Correctness: clear, I hope

Time: \text{O}(m + n) \text{ (assuming edge-list representation of graph)}
Summary

• Graphs: abstract relationships among pairs of objects

• Terminology: node/vertex/vertices, edges, paths, multi-edges, self-loops, connected

• Representation: Adjacency list, adjacency matrix

• Nodes vs Edges: $m = O(n^2)$, often less

• BFS: Layers, queue, shortest paths, all edges go to same or adjacent layer

• DFS: recursion/stack; all edges ancestor/descendant

• Algorithms: Connected Comp, bipartiteness, topological sort