CSE 421

DFS / Topological Ordering

Shayan Oveis Gharan

Depth First Search

Follow the first path you find

as far as you can go; back up —

to last unexplored edge when
you reach a dead end,
then go as far you can ”

Naturally implemented using recursive calls or a stack

DFS(s) — Recursive version

Global Initialization: mark all vertices undiscovered

DFS(v)
Mark v discovered

for each edge {v,x}
if (x is undiscovered)
Mark x discovered
DFS(x)

Mark v full-discovered

Color code:

D F S (A) undiscovered

discovered
@ fully-explored
Suppose edge lists \ ,

~~~~~ Call Stack

at each vertex =t 0000 - <
aresoted [ B }reene, @ (Edge list):
alphabeticall

" ! i i " A (B,J)

.
‘e,
IS
*
L

-0 0 O

{1




Color code:
undiscovered
discovered
fully-explored

Call Stack:

@ (Edge list)
ST A (BJ)

B (A,C,J)

{1,2}




Color code:
undiscovered
discovered
fully-explored

Call Stack:

@ (Edge list)
-l A (BJ)

B (X£.J)
C (B,D,G,H)

{1,2,3}




Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
ST A (BJ)
B (#,2.J)
.':. é “" C (H’w ,G,H)
© @ @ (f)

OSONORNON"

{1,2,3,4}




Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
ST A (BJ)
B (#,2.J)
C(B,G,H)
D (Z,E.F)
© OO ™

S ONONNON:

{1,2,3,4,5}




Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
K . B,J)

62 O O «

{1 72,3,415,
6}




Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
S, A (BY)
.: E "¢ B(%Qﬂj)
C (BP,G,H)

D(Z.E.F)

: Py, . " s
' F(B.E2Z)
; : G (C,F)

) O O

{1 72,3,415,
6,7}

10




Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
ST A (BY)
.: E "¢ B(%Qﬂj)
C (BP,G,H)

D(Z.E.F)

- . K : - - (ﬁy)
@ F (D 2)
. < a@p

) O O

{1 72,3,415,
6,7}

11




Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
ST A (BY)
.: E "¢ B(%Qﬂj)
C (BP,G,H)

D(Z.E.F)

LS 3 - ) E (gy)
' F(P,E.2)

) O O

{1 72,3,415,
6}

12




Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
S A (BJ)
.: E "¢ B(%Qﬂj)
C (BP,G,H)

D(Z.E.F)

L4 *
L4 [ ] *
4 [ ] “
L4 » .
N - *
L4 L *
Q . %
| | ) [
L4
Y E (E 'y)
[N ]
L [ ]

) O O

{1,2,3,4,5}

13




Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
ST, A (BJ)
B (#,2.J)
:': é ‘\‘ C (B’W’GaH)
| : : D (Z.EF)

ORONONNON::

{1,2,3,4}

14




Color code:
undiscovered
discovered
fully-explored

Call Stack:

@ (Edge list)
-l A (BJ)

B (X¢.J)
C(B.R.G.H)

ORONONNON::

{1,2,3}

15




Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
S A (BY)
B (#,2.))
C (B.J2.@.H)
: H(C,l,J)

@ Stf] =

{1,2,3,8}

16




Color code:
undiscovered
discovered
fully-explored

Call Stack:

@ (Edge list)
: B,

(B,
(9(57)

(B, 2. 1)
(&)
(H)

—ITOW>

@ st] =

{1,2,3,8,9}

17




Color code:
undiscovered
discovered
fully-explored

Call Stack:

@ (Edge list)
o~ (B)

@ Stf] =

{1,2,3,8}

18




..
IS
e
.

Color code:

undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

19




Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

(BJ)

(@)
(BP.G.H)
H(Z.//)

O w>

{1,2,3,8,10
11}

20




Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

Wy

st[] =
{1,2,3,8,10
11,12}

21




Color code:

undiscovered

discovered

@ fully-explored

Call Stack:
(Edge list)

J (MBIKL)
K (JAY

L (S
M(L)

st[] =
{1,2,3,8,10
,11,12,13}

22




Color code:

undiscovered

discovered

@ fully-explored

Call Stack:
(Edge list)

J (MBIKL)
K (JAY
L (KM

st[] =
{1,2,3,8,10
11,12}

23




Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

(BJ)
(

X @)
(B12.G. 1)
H(Z )4

J (XBHKL)
K (LY

O >

st[] =
{1,2,3,8,10
11}

24




Color code:

undiscovered

discovered

@ fully-explored

Call Stack:
(Edge list)

J (MBIKL)

st] =
{1,2,3,8,
10}

25




Color code:

undiscovered

discovered

@ fully-explored

Call Stack:
(Edge list)

J (MBIK )

st] =
{1,2,3,8,
10}

26




Color code:

D F S (A) undiscovered

discovered
@ fully-explored
‘e, Call Stack:
@ @ (Edge list)
A (BY)
@ B (X,2.J)
C (B1,@.H)
: g H (Z.)/)

{1,2,3,8}




Color code:

D F S ( A) undiscovered

discovered
@ fully-explored
‘e, Call Stack:
@ @ (Edge list)
A (BY)
@ B (X,0.J)
", CEBEH)

----- ONOEEN TR~

{1,2,3}




Color code:

D F S ( A) undiscovered

discovered

@ fully-explored
‘e, Call Stack:
@ @ (Edge list)
* A (BJ)

(c3, B (KG)

----- ONOEEN TR~

{1,2}




Color code:

D F S ( A) undiscovered

discovered

@ fully-explored
‘e, Call Stack:
@ @ (Edge list)
* A (BJ)

©

----- ONOEEN TR~

{1,2}




Color code:

D F S ( A) undiscovered

discovered

@ fully-explored

‘e, Call Stack:

@ (Edge list)

L
L 4
.
2

E A (BJ)

{1}




Color code:

D F S ( A) undiscovered

discovered

@ fully-explored

‘e, Call Stack:

@ (Edge list)

L
L 4
.
2

! E A BY)

{1}




Color code:

D F S ( A) undiscovered

discovered

@ fully-explored

‘e, Call Stack:

@ (Edge list)

L 4
.
2

B ., TA-DA!!

@ ‘

.

.

. .
@ ..... @ @

st] = {}




Edge code:
Tree edge
Back edge

34



Tree edge

Backedge =ss::-

No Cross Edges!
)

Edge code:

% 2e .
o*
*
o @
@0 m
w @ IlIlIlIIIIIIIIIIIIIIIIIIIIIII@
\
ld

< e O
D &)



Properties of (undirected) DFS

Like BFS(s):
« DFS(s) visits x iff there is a path in G from s to x
So, we can use DFS to find connected components

« Edges into then-undiscovered vertices define a tree —
the "depth first spanning tree" of G

Unlike the BFS tree:
* The DF spanning tree isn't minimum depth
e |ts levels don't reflect min distance from the root

* Non-tree edges never join vertices on the same or
adjacent levels

36



Non-Tree Edges in DFS

All non-tree edges join a vertex and one of its
descendents/ancestors in the DFS tree

BFS tree # DFS tree, but, as with BFS, DFS has found a

tree in the graph s.t. non-tree edges are "simple" — only
descendant/ancestor

37



Non-Tree Edges in DFS

Obs: During DFS(x) every vertex marked visited is a descendant
of x in the DFS tree

Lemma: For every edge {x, v}, if {x, y} is not in DFS tree, then
one of x or y is an ancestor of the other in the tree.

Proof:

One of x or vy is visited first, suppose WLOG that x is visited first
and therefore DFS(x) was called before DFS(y)

Since {x, y} is not in DFS tree, y was visited when the edge {x,y}
was examined during DFS(x)

Therefore y was visited during the call to DFS(x) soy is a
descendant of x.

38



AGs and Topological Ordering



Precedence Constraints

In a directed graph, an edge (i,j) means task i must occur
before task j.

Applications
« Course prerequisite:

« Compilation:

must compile module i before.
« Computing overflow:

output of job i is part of input to job j
« Manufacturing or assembly:

sand it before paint it

40



Directed Acyclic Graphs (DAG)

A DAG is a directed acyclic graph, i.e.,
one that contains no directed cycles.

Def:. A topological order of a directed graph G = (V, E) is an

ordering of its nodes as v, Vv, ..., V, SO that for every edge
(Vi, v;) we have i <].

a topological ordering of that DAG—
all edges left-to-right 41



DAGSs: A Sufficient Condition

Lemma: If G has a topological order, then G is a DAG.

Pf. (by contradiction)

Suppose that G has a topological order 1,2, ...,n and that G also
has a directed cycle C.

Let i be the lowest-indexed node in C, and let j be the node just
before i; thus (j,i) is an (directed) edge.

By our choice of i, we have i < j.

On the other hand, since (j,i) isanedge and 1, ...,nis a
topological order, we must have j < i, a contradiction

the directed cycle C

@OMO#O#O@

the supposed topological order: 1,2,...,n 42




DAGSs: A Sufficient Condition

G has a
topological order

G is a DAG

43



Every DAG has a source node

Lemma: If G is a DAG, then G has a node with no incoming edges (i.e.,
a source).

Pf. (by contradiction)
Suppose that G is a DAG and and it has no source

Pick any node v, and begin following edges backward from v. Since v
has at least one incoming edge (u, v) we can walk backward to u.

Then, since u has at least one incoming edge (x, u), we can walk

backward to x. Is this similar to a
Repeat until we visit a node, say w, twice. previous proof?

Let C be the sequence of nodes encountered between successive visits
tow. Cis a cycle.

44




DAG => Topological Order

Lemma: If G is a DAG, then G has a topological order

Pf. (by induction on n)
Base case: trueifn=1.

IH: Every DAG with n-1 vertices has a topological ordering.

|S: Given DAG with n > 1 nodes, find a source node v.
G — {v}is aDAG, since deleting v cannot create cycles.

Reminder: Always remove
vertices/edges to use IH

By IH, G — {v} has a topological ordering.
Place v first in topological ordering; then append nodes of G - { v }
in topological order. This is valid since v has no incoming edges.

45



A Characterization of DAGs

G has a
topological order

I
—

G is a DAG

46



Topological Order Algorithm: Example

47



Topological Order Algorithm: Example

Topological order: 1, 2, 3, 4, 5, 6, 7

48



Topological Sorting Algorithm

Maintain the following:
count[w] = (remaining) number of incoming edges to node w

S = set of (remaining) nodes with no incoming edges
Initialization:
count[w] = 0 for all w
count[w]++ for all edges (v,w) O(m + n)
S =S u {w} for all w with count[w]=0
Main loop:
while S not empty
* remove some v from S
* make v next in topo order O(1) per node
« for all edges from v to some w O(1) per edge
—decrement count[w]
—add w to S if count[w] hits O
Correctness: clear, | hope
Time: O(m + n) (assuming edge-list representation of graph)

49



Summary

Graphs: abstract relationships among pairs of objects

Terminology: node/vertex/vertices, edges, paths, multi-edges,
self-loops, connected

Representation: Adjacency list, adjacency matrix
Nodes vs Edges: m = O(n?), often less

BFS: Layers, queue, shortest paths, all edges go to same or
adjacent layer

DFS: recursion/stack; all edges ancestor/descendant

Algorithms: Connected Comp, bipartiteness, topological sort
50



