CSE421: Design and Analysis of Algorithms

April 10, 2019

Lecturer: Shayan Oveis Gharan

Lecture BFS and Connected Components

In class we discussed a pseudo-code of BFS(s); Here I have modified the code to maintain the level of each vertex in the BFS tree, in other words, the array L[] will have the shortest path distance from s to u for any vertex u in the connected component of s.

Function $BFS(s)$
Initialize: mark all vertices "undiscovered'
mark s "discovered"
queue = $\{s\}$
L[s]=0
while queue not empty do
$u = remove_first(queue)$
for each edge $\{u, x\}$ do
if x is undiscovered then
mark x discovered
append x on queue
L[x]=L[u]+1
end
end
mark u fully-explored
end

Algorithm 1: Computes the shortest path distance from s

Next, we write a code to determine the connected components of a graph. When we call the function Connected-Components, it will construct an array A such that for all vertices v in the same connected component A[v] is the same.

For example, consider the following graph; it has 3 connected components: $\{1, 3, 4\}, \{5\}, \{2, 6\}$. If we run the code on the following graph, we are going to make 3 BFS calls:

- 1) First we call BFS(1) which visits vertices 1,3,4 and so we get A[1] = A[3] = A[4] = 1.
- 2) Then we call BFS(2) which visits vertices 2,6 and so A[2] = A[6] = 2.

3) Then we call BFS(5) which visits the vertex 5 and so we get A[5] = 3.

Note that we are not going to call BFS(3), BFS(4) and BFS(6). Because by the time the main loop gets to vertices 3, 4, and 6 they are already fully-explored.

BFS and Connected Components-1

Function BFS(s,c)mark s "discovered" queue = $\{s\}$ A[s]=cwhile queue not empty do $u = remove_first(queue)$ for each edge $\{u, x\}$ do if x is undiscovered then mark x discovered append x on queue A[x]=c; \mathbf{end} \mathbf{end} mark u fully-explored $\quad \text{end} \quad$ Function Connected-Components **Initialize:** mark all vertices "undiscovered" and set c = 1for $v = 1 \rightarrow n$ do if v is undiscovered then BFS(v,c)c=c+1end end

Algorithm 2: Computes the Connected Components of a Graph

Also, observe that after running this code, for any pair of vertices u, v, there is a path connecting u to v in G if and only if A[u] = A[v].